
An Efficient Algorithm for Optimal Routing Through
Constant Function Market Makers

Theo Diamandis
tdiamand@mit.edu

Max Resnick
max@riskharbor.com

Tarun Chitra
tarun@gauntlet.network

Guillermo Angeris
gangeris@baincapital.com

February 2023

Abstract

Constant function market makers (CFMMs) such as Uniswap have facilitated tril-
lions of dollars of digital asset trades and have billions of dollars of liquidity. One
natural question is how to optimally route trades across a network of CFMMs in order
to ensure the largest possible utility (as specified by a user). We present an efficient al-
gorithm, based on a decomposition method, to solve the problem of optimally executing
an order across a network of decentralized exchanges. The decomposition method, as a
side effect, makes it simple to incorporate more complicated CFMMs, or even include
‘aggregate CFMMs’ (such as Uniswap v3), into the routing problem. Numerical results
show significant performance improvements of this method, tested on realistic networks
of CFMMs, when compared against an off-the-shelf commercial solver.

Introduction
Decentralized Finance, or DeFi, has been one of the largest growth areas within both financial
technologies and cryptocurrencies since 2019. DeFi is made up of a network of decentralized
protocols that match buyers and sellers of digital goods in a trustless manner. Within DeFi,
some of the most popular applications are decentralized exchanges (DEXs, for short) which
allow users to permissionlessly trade assets. While there are many types of DEXs, the most
popular form of exchange (by nearly any metric) is a mechanism known as the constant
function market maker, or CFMM. A CFMM is a particular type of DEX which allows
anyone to propose a trade (e.g., trading some amount of one asset for another). The trade
is accepted if a simple rule, which we describe later in §1.1, is met.

The prevalence of CFMMs on blockchains naturally leads to questions about routing
trades across networks or aggregations of CFMMs. For instance, suppose that one wants
to trade some amount of asset A for the greatest possible amount of asset B. There could

1

be many ‘routes’ that provide this trade. For example, we may trade asset A for asset C,
and only then trade asset C for asset B. This routing problem can be formulated as an
optimization problem over the set of CFMMs available to the user for trading. Angeris et
al. [Ang+22b] showed that the general problem of routing is a convex program for concave
utilities, ignoring blockchain transactions costs, though special cases of the routing problem
have been studied previously [Wan+22; DKP21].

This paper. In this paper, we apply a decomposition method to the optimal routing
problem, which results in an algorithm that easily parallelizes across all DEXs. To solve the
subproblems of the algorithm, we formalize the notions of swap markets, bounded liquid-
ity, and aggregate CFMMs (such as Uniswap v3) and discuss their properties. Finally, we
demonstrate that our algorithm for optimal routing is efficient, practical, and can handle the
large variety of CFMMs that exist on chain today.

1 Optimal routing
In this section, we define the general problem of optimal routing and give concrete examples
along with some basic properties.

Assets. In the optimal routing problem, we have a global labeling of n assets which we are
allowed to trade, indexed by j = 1, . . . , n throughout this paper. We will sometimes refer to
this ‘global collection’ as the universe of assets that we can trade.

Trading sets. Additionally, in this problem, we have a number of markets i = 1, . . . ,m
(usually constant function market makers, or collections thereof, which we discuss in §1.1)
which trade a subset of the universe of tokens of size ni. We define market i’s behavior, at
the time of the trade, via its trading set Ti ⊆ Rni . This trading set behaves in the following
way: any trader is able to propose a trade consisting of a basket of assets ∆i ∈ Rni , where
positive entries of ∆i denote that the trader receives those tokens from the market, while
negative values denote that the trader tenders those tokens to the market. (Note that the
baskets here are of a subset of the universe of tokens which the market trades.) The market
then accepts this trade (i.e., takes the negative elements in ∆i from the trader and gives the
positive elements in ∆i to the trader) whenever

∆i ∈ Ti.

We make two assumptions about the sets Ti. One, that the set Ti is a closed convex set,
and, two, that the zero trade is always an acceptable trade, i.e., 0 ∈ Ti. All existing DEXs
that are known to the authors have a trading set that satisfies these conditions.

2

Local and global indexing. Each market i trades only a subset of ni tokens from the
universe of tokens, so we introduce the matrices Ai ∈ Rn×ni to connect the local indices to
the global indices. These matrices are defined such that Ai∆i yields the total amount of
assets the trader tendered or received from market i, in the global indices. For example, if
our universe has 3 tokens and market i trades the tokens 2 and 3, then

Ai =

0 0
1 0
0 1

 .

Written another way, (Ai)jk = 1 if token k in the market’s local index corresponds to global
token index j, and (Ai)jk = 0 otherwise. We note that the ordering of tokens in the local
index does not need to be the same as the global ordering.

Network trade vector. By summing the net trade in each market, after mapping the
local indices to the global indices, we obtain the network trade vector

Ψ =
m∑
i=1

Ai∆i.

We can interpret Ψ as the net trade across the network of all markets. If Ψi > 0, we receive
some amount of asset i after executing all trades {∆i}mi=1. On the other hand, if Ψi < 0,
we tender some of asset i to the network. Note that having Ψi = 0 does not imply we do
not trade asset i; it only means that, after executing all trades, we received as much as we
tendered.

Network trade utility. Now that we have defined the network trade vector, we introduce
a utility function U : Rn → R ∪ {−∞} that gives the trader’s utility of a net trade Ψ. We
assume that U is concave and increasing (i.e., we assume all assets have value with potentially
diminishing returns). Furthermore, we will use infinite values of U to encode constraints; a
trade Ψ such that U(Ψ) = −∞ is unacceptable to the trader. We can choose U to encode
several important actions in markets, including liquidating or purchasing a basket of assets
and finding arbitrage. See [Ang+22a, §5.2] for several examples.

Optimal routing problem. The optimal routing problem is then the problem of finding
a set of valid trades that maximizes the trader’s utility:

maximize U(Ψ)

subject to Ψ =
m∑
i=1

Ai∆i

∆i ∈ Ti, i = 1, . . . ,m.

(1)

The problem variables are the network trade vector Ψ ∈ Rn and trades with each market
∆i ∈ Rni , while problem data are the utility function U : Rn → R ∪ {∞}, the matrices

3

Ai ∈ Rn×ni , and the trading sets Ti ⊆ Rni , where i = 1, . . . ,m. Since the trading sets are
convex and the utility function is concave, this problem is a convex optimization problem.
In the subsequent sections, we will use basic results of convex optimization to construct an
efficient algorithm to solve problem (1).

1.1 Constant function market makers

Most decentralized exchanges, such as Uniswap v2, Balancer, Curve, among others, are
currently organized as constant function market makers (CFMMs, for short) or collections
of CFMMs (such as Uniswap v3) [AC20; Ang+22a]. A constant function market maker is a
type of permissionless market that allows anyone to trade baskets of, say, r, assets for other
baskets of these same s assets, subject to a simple set of rules which we describe below.

Reserves and trading functions. A constant function market maker, which allows r
tokens to be traded, is defined by two properties: its reserves R ∈ Rr

+, where Rj denotes
the amount of asset j available to the CFMM, and a trading function which is a concave
function φ : Rr

+ → R, which specifies the CFMM’s behavior and its trading fee 0 < γ ≤ 1.

Acceptance condition. Any user is allowed to submit a trade to a CFMM, which is, from
before, a vector ∆ ∈ Rr. The submitted trade is then accepted if the following condition
holds:

φ(R− γ∆− −∆+) ≥ φ(R), (2)

and R − γ∆− − ∆+ ≥ 0. Here, we denote ∆+ to be the ‘elementwise positive part’ of
∆, i.e., (∆+)j = max{∆j, 0} and ∆− to be the ‘elementwise negative part’ of ∆, i.e.,
(∆−)j = min{∆j, 0} for every asset j = 1, . . . , r. The basket of assets ∆+ may sometimes
be called the ‘received basket’ and ∆− may sometimes be called the ‘tendered basket’ (see,
e.g., [Ang+22a]). Note that the trading set T , for a CFMM, is exactly the set of ∆ such
that (2) holds,

T = {∆ ∈ Rr | φ(R− γ∆− −∆+) ≥ φ(R)}. (3)

It is clear that 0 ∈ T , and it is not difficult to show that T is convex whenever φ is concave,
which is true for all trading functions used in practice. If the trade is accepted then the
CFMM pays out ∆+ from its reserves and receives −∆− from the trader, which means the
reserves are updated in the following way:

R← R−∆− −∆+.

The acceptance condition (2) can then be interpreted as: the CFMM accepts a trade only
when its trading function, evaluated on the ‘post-trade’ reserves with the tendered basket
discounted by γ, is at least as large as its value when evaluated on the current reserves.

It can be additionally shown that the trade acceptance conditions in terms of the trading
function φ and in terms of the trading set T are equivalent in the sense that every trading
set has a function φ which generates it [AC20], under some basic conditions.

4

Examples. Almost all examples of decentralized exchanges currently in production are
constant function market makers. For example, the most popular trading function (as mea-
sured by most metrics) is the product trading function:

φ(R) =
√
R1R2,

originally proposed for Uniswap [ZCP18] and a ‘bounded liquidity’ variation of this function:

φ(R) =
√
(R1 + α)(R2 + β), (4)

used in Uniswap v3 [Ada+21], with α, β ≥ 0. Other examples include the weighted geometric
mean (as used by Balancer [MM19])

φ(R) =
r∏

i=1

Rwi
i , (5)

where r is the number of assets the exchange trades, and w ∈ Rr
+ with 1Tw = 1 are known

as the weights, along with the Curve trading function

φ(R) = α1TR−

(
r∏

i=1

R−1
i

)
,

where α > 0 is a parameter set by the CFMM [Ego]. Note that the ‘product’ trading function
is the special case of the weighted geometric mean function when r = 2 and w1 = w2 = 1/2.

Aggregate CFMMs. In some special cases, such as in Uniswap v3, it is reasonable to
consider an aggregate CFMM, which we define as a collection of CFMMs, which all trade
the same assets, as part of a single ‘big’ trading set. A specific instance of an aggregate
CFMM currently used in practice is in Uniswap v3 [Ada+21]. Any ‘pool’ in this exchange is
actually a collection of CFMMs with the ‘bounded liquidity’ variation of the product trading
function, shown in (4). We will see that we can treat these ‘aggregate CFMMs’ in a special
way in order to significantly improve performance.

2 An efficient algorithm
A common way of solving problems such as problem (1), where we have a set of variables
coupled by only a single constraint, is to use a decomposition method [DW60; Ber16]. The
general idea of these methods is to solve the original problem by splitting it into a sequence
of easy subproblems that can be solved independently. In this section, we will see that
applying a decomposition method to the optimal routing problem gives a solution method
which parallelizes over all markets. Furthermore, it gives a clean programmatic interface;
we only need to be able to find arbitrage for a market, given a set of reference prices. This
interface allows us to more easily include a number of important decentralized exchanges,
such as Uniswap v3.

5

2.1 Dual decomposition

To apply the dual decomposition method, we first take the coupling constraint of problem (1),

Ψ =
m∑
i=1

Ai∆i,

and relax it to a linear penalty in the objective, parametrized by some vector ν ∈ Rn. (We will
show in §2.2 that the only reasonable choice of ν is a market clearing price, sometimes called
a no-arbitrage price, and that this choice actually results in a relaxation that is tight; i.e.,
a solution for this relaxation also satisfies the original coupling constraint.) This relaxation
results in the following problem:

maximize U(Ψ)− νT (Ψ−
∑m

i=1Ai∆i)

subject to ∆i ∈ Ti, i = 1, . . . ,m,

where the variables are the network trade vector Ψ ∈ Rn and the trades are ∆i ∈ Rni for
each market i = 1, . . . ,m. Note that this formulation can be viewed as a family of problems
parametrized by the vector ν.

A simple observation is that this new problem is actually separable over all of its variables.
We can see this by rearranging the objective:

maximize U(Ψ)− νTΨ+
∑m

i=1(A
T
i ν)

T∆i

subject to ∆i ∈ Ti, i = 1, . . . ,m.
(6)

Since there are no additional coupling constraints, we can solve for Ψ and each of the ∆i

with i = 1, . . . ,m separately.

Subproblems. This method gives two types of subproblems, each depending on ν. The
first, over Ψ, is relatively simple:

maximize U(Ψ)− νTΨ, (7)

and can be recognized as a slightly transformed version of the Fenchel conjugate [BV04,
§3.3]. We will write its optimal value (which depends on ν) as

Ū(ν) = sup
Ψ

(
U(Ψ)− νTΨ

)
.

The function Ū can be easily derived in closed form for a number of functions U . Additionally,
since Ū is a supremum over an affine family of functions parametrized by ν, it is a convex
function of ν [BV04, §3.2.3]. (We will use this fact soon.) Another important thing to note
is that unless ν ≥ 0, the function Ū(ν) will evaluate to +∞. This can be interpreted as an
implicit constraint on ν.

6

The second type of problem is over each trade ∆i for i = 1, . . . ,m, and can be written,
for each market i, as

maximize (AT
i ν)

T∆i

subject to ∆i ∈ Ti.
(8)

We will write its optimal value, which depends on AT
i ν, as arbi(A

T
i ν). Problem (8) can be

recognized as the optimal arbitrage problem (see, e.g., [Ang+22a]) for market i, when the
external market price, or reference market price, is equal to AT

i ν. Since arbi(A
T
i ν) is also

defined as a supremum over a family of affine functions of ν, it too is a convex function of
ν. Solutions to the optimal arbitrage problem are known, in closed form, for a number of
trading functions. (See appendix A for some examples.)

Dual variables as prices. The optimal solution to problem (8), given by ∆⋆
i , is a point

∆⋆
i in Ti such that there exists a supporting hyperplane to the set Ti at ∆⋆

i with slope
AT

i ν [BV04, §5.6]. We can interpret these slopes as the ‘marginal prices’ of the ni assets,
since, letting δ ∈ Rni be a small deviation from the trade ∆⋆

i , we have, writing ν̃ = AT
i ν as

the weights of ν in the local indexing:

ν̃T (∆⋆
i + δ) ≤ ν̃T∆⋆

i ,

for every δ with ∆⋆
i + δ ∈ Ti. (By definition of optimality.) Canceling terms, we find:

ν̃T δ ≤ 0.

If, for example, δi and δj are the only two nonzero entries of δ, we would have

δi ≤ −
ν̃j
ν̃i
δj,

so the exchange rate between i and j is at most ν̃i/ν̃j. This observation lets us interpret the
dual variables ν̃ (and therefore the dual variables ν) as ‘marginal prices’, up to a constant
multiple.

2.2 The dual problem

The objective value of problem (6), which is a function of ν, can then be written as

g(ν) = Ū(ν) +
m∑
i=1

arbi(A
T
i ν). (9)

This function g : Rn → R is called the dual function. Since g is the sum of convex functions,
it too is convex. The dual problem is the problem of minimizing the dual function,

minimize g(ν), (10)

over the dual variable ν ∈ Rn, which is a convex optimization problem since g is a convex
function.

7

Dual optimality. While we have defined the dual problem, we have not discussed how it
relates to the original routing problem we are attempting to solve, problem (1). Let ν⋆ be a
solution to the dual problem (10). Assuming that the dual function is differentiable at ν⋆,
the first order, unconstrained optimality conditions for problem (10) are that

∇g(ν⋆) = 0.

(The function g need not be differentiable, in which case a similar, but more careful, argument
holds using subgradient calculus.) It is not hard to show that if Ū is differentiable at ν⋆, then
its gradient must be ∇Ū(ν⋆) = −Ψ⋆, where Ψ⋆ is the solution to the first subproblem (7),
with ν⋆. (This follows from the fact that the gradient of a maximum, when differentiable,
is the gradient of the argmax.) Similarly, the gradient of arbi when evaluated at AT

i ν
⋆

is ∆⋆
i , where ∆⋆

i is a solution to problem (8) with marginal prices AT
i ν

⋆, for each market
i = 1, . . . ,m. Using the chain rule, we then have:

0 = ∇g(ν⋆) = −Ψ⋆ +
m∑
i=1

Ai∆
⋆
i . (11)

Note that this is exactly the coupling constraint of problem (1). In other words, when
the linear penalties ν⋆ are chosen optimally (i.e., chosen such that they minimize the dual
problem (10)) then the optimal solutions for subproblems (7) and (8) automatically satisfy
the coupling constraint. Because problem (6) is a relaxation of the original problem (1)
for any choice of ν, any solution to problem (6) that satisfies the coupling constraint of
problem (1) must also be a solution to this original problem. All that remains is the question
of finding a solution ν⋆ to the dual problem (10).

2.3 Solving the dual problem

The dual problem (10) is a convex optimization problem that is easily solvable in practice,
even for very large n and m. In many cases, we can use a number of off-the-shelf solvers
such as SCS [O’D+16], Hypatia [CKV21], and Mosek [ApS19]. For example, a relatively
effective way of minimizing functions when the gradient is easily evaluated is the L-BFGS-B
algorithm [Byr+95; Zhu+97; MN11]: given a way of evaluating the dual function g(ν) and
its gradient ∇g(ν) at some point ν, the algorithm will find an optimal ν⋆ fairly quickly in
practice. (See §5 for timings.) By definition, the function g is easy to evaluate if the sub-
problems (7) and (8) are easy to evaluate. Additionally the right hand side of equation (11)
gives us a way of evaluating the gradient ∇g, essentially for free, since we typically receive
the optimal Ψ⋆ and ∆⋆

i as a consequence of computing Ū and arbi.

Interface. In order for a user to specify and solve the dual problem (10) (and therefore
the original problem) it suffices for the user to specify (a) some way of evaluating Ū and its
optimal Ψ for problem (7) and (b) some way of evaluating the arbitrage problem (8) and its
optimal trade ∆⋆

i for each market i that the user wishes to include. New markets can be easily

8

added by simply specifying how to arbitrage them, which, as we will see next, turns out to
be straightforward for most practical decentralized exchanges. The Julia interface required
for the software package described in §4 is a concretization of the interface described here.

3 Swap markets
In practice, most markets trade only two assets; we will refer to these kinds of markets as
swap markets. Because these markets are so common, the performance of our algorithm is
primarily governed by its ability to solve (8) quickly on these two asset markets. We show
practical examples of these computations in appendix A. In this section, we will suppress
the index i with the understanding that we are referring to a specific market i.

3.1 General swap markets

Swap markets are simple to deal with because their trading behavior is completely specified
by the forward exchange function [Ang+22a] for each of the two assets. In what follows, the
forward trading function f1 will denote the maximum amount of asset 2 that can be received
by trading some fixed amount δ1 of asset 1, i.e., if T ⊆ R2 is the trading set for a specific
swap market, then

f1(δ1) = sup{λ2 | (−δ1, λ2) ∈ T}, f2(δ2) = sup{λ1 | (λ1,−δ2) ∈ T}.

In other words, f1(δ1) is defined as the largest amount λ2 of token 2 that one can receive for
tendering a basket of (δ1, 0) to the market. The forward trading function f2 has a similar
interpretation. If f1(δ1) is finite, then this supremum is achieved since the set T is closed.

Trading function. If the set T has a simple trading function representation, as in (3),
it is not hard to show that the function f1 is the unique (pointwise largest) function that
satisfies

φ(R1 + γδ1, R2 − f1(δ1)) = φ(R1, R2). (12)

whenever φ is nondecreasing, which may be assumed for all CFMMs [AC20], and similarly
for f2. (Note the equality here, compared to the inequality in the original definition (2).)

Properties. The functions f1 and f2 are concave, since the trading set T is convex, and
nonnegative, since 0 ∈ T by assumption. Additionally, we can interpret the directional
derivative of fj as the current marginal price of the received asset, denominated in the
tendered asset. Specifically, we define

f ′
j(δj) = lim

h→0+

fj(δj + h)− fj(δj)

h
. (13)

This derivative is sometimes referred to as the price impact function [ACE22]. Intuitively,
f ′
1(0) is the current price of asset 1 quoted by the swap market before any trade is made,

9

and f ′
1(δ) is the price quoted by the market to add an additional ε units of asset 1 to a trade

of size δ, for very small ε. We note that in the presence of fees, the marginal price to add
to a trade of size δ, i.e., f ′

1(δ), will be lower than the price to do so after the trade has been
made [AC20].

Swap market arbitrage problem. Equipped with the forward exchange function, we
can specialize (8). Overloading notation slightly by writing (ν1, ν2) ≥ 0 for AT

i ν we define
the swap market arbitrage problem for a market with forward exchange function f1:

maximize − ν1δ1 + ν2f1(δ1)

subject to δ1 ≥ 0,
(14)

with variable δ1 ∈ R We can also define a similar arbitrage problem for f2:

maximize ν1f2(δ2)− ν2δ2

subject to δ2 ≥ 0,

with variable δ2 ∈ R. Since f1 and f2 are concave, both problems are evidently convex
optimization problems of one variable. Because they are scalar problems, these problems
can be easily solved by bisection or ternary search. The final solution is to take whichever of
these two problems has the largest objective value and return the pair in the correct order.
For example, if the first problem (14) has the highest objective value with a solution δ⋆1, then
∆⋆ = (−δ⋆1, f(δ⋆1)) is a solution to the original arbitrage problem (8). (For many practical
trading sets T , it can be shown that at most one problem will have strictly positive objective
value, so it is possible to ‘short-circuit’ solving both problems if the first evaluation has
positive optimal value.)

Problem properties. One way to view each of these problems is that they ‘separate’ the
solution space of the original arbitrage problem (8) into two cases: one where an optimal
solution ∆⋆ for (8) has ∆⋆

1 ≤ 0 and one where an optimal solution has ∆⋆
2 ≤ 0. (Any optimal

point ∆⋆ for the original arbitrage problem (8) will never have both ∆⋆
1 < 0 and ∆⋆

2 < 0
as that would be strictly worse than the 0 trade for ν > 0, and no reasonable market will
have ∆⋆

1 > 0 and ∆⋆
2 > 0 since the market would be otherwise ‘tendering free money’ to the

trader.) This observation means that, in order to find an optimal solution to the original
optimal arbitrage problem (8), it suffices to solve two scalar convex optimization problems.

Optimality conditions. The optimality conditions for problem (14) are that, if

ν2f
′
1(0) ≤ ν1 (15)

then δ⋆1 = 0 is a solution. Otherwise, we have

δ⋆1 = sup{δ ≥ 0 | ν2f ′
1(δ) ≥ ν1}.

10

Similar conditions hold for the problem over δ2. If the function f ′
1 is continuous, not just

semicontinuous, then the expression above simplifies to finding a root of a monotone function:

ν2f
′
1(δ

⋆
1) = ν1. (16)

If there is no root and condition (15) does not hold, then δ⋆1 = ∞. However, the solution
will be finite for any trading set that does not contain a line, i.e., the market does not have
‘infinite liquidity’ at a specific price.

No-trade condition. Note that using the inequality (15) gives us a simple way of verifying
whether we will make any trade with market T , given some prices ν1 and ν2. In particular,
the zero trade is optimal whenever

f ′
1(0) ≤

ν1
ν2
≤ 1

f ′
2(0)

.

We can view the interval [f ′
1(0), 1/f

′
2(0)] as a type of ‘bid-ask spread’ for the market with

trading set T . (In constant function market makers, this spread corresponds to the fee γ
taken from the trader.) This ‘no-trade condition’ lets us save potentially wasted effort of
computing an optimal arbitrage trade as, in practice, most trades in the original problem
will be 0.

Bounded liquidity. In some cases, we can easily check not only when a trade will not be
made (say, using condition (15)), but also when the ‘largest possible trade’ will be made.
(We will define what this means next.) Markets for which there is a ‘largest possible trade’
are called bounded liquidity markets. We say a market has bounded liquidity in asset 2 if
there is a finite δ1 such that f1(δ1) = sup f1, and similarly for f2. In other words, there is
a finite input δ1 which will give the maximum possible amount of asset 2 out. A market
has bounded liquidity if it has bounded liquidity on both of its assets. A bounded liquidity
market then has a notion of a ‘minimum price’. First, define

δ−1 = inf{δ1 ≥ 0 | f1(δ1) = sup f1},

i.e., δ−1 is the smallest amount of asset 1 that can be tendered to receive the maximum
amount the market is able to supply. We can then define the minimum supported price as
the left derivative of f1 at δ−1 :

f−
1 (δ

−
1) = lim

h→0+

f(δ−1)− f(δ−1 − h)

h
.

The first-order optimality conditions imply that δ−1 is a solution to the scalar optimal arbi-
trage problem (14) whenever

f−
1 (δ

−
1) ≥

ν1
ν2
.

11

In English, this can be stated as: if the minimum supported marginal price we receive for δ−1
is still larger than the price being arbitraged against, ν1/ν2, it is optimal to take all available
liquidity from the market. Using the same definitions for f2, we find that the only time the
full problem (14) needs to be solved is when the price being arbitraged against ν1/ν2 lies in
the interval

f−
1 (δ

−
1) <

ν1
ν2

<
1

f−
2 (δ

−
2)

. (17)

(It may be the case that f−
2 (δ

−
2) = 0 in which case we define the right hand side to be ∞.)

We will call this interval of prices the active interval for a bounded liquidity market.

Example. In the case of Uniswap v3 [Ada+21], we have a collection of, say, i = 1, . . . , s
bounded liquidity product functions (4), where the parameters αk, βk > 0 are chosen such
that all of the active price intervals, as defined in (17), are disjoint. (An explicit form for this
trading function is given in the appendix, equation (18).) Solving the arbitrage problem (14)
over this collection of CFMMs is relatively simple. Since all of the intervals are disjoint, any
price ν1/ν2 can lie in at most one of the active intervals. We therefore do not need to compute
the optimal trade for any interval, except the single interval where ν1/ν2 lies, which can be
done in closed form. We also note that this ‘trick’ applies to any collection of bounded
liquidity markets with disjoint active price intervals.

4 Implementation
We have implemented this algorithm in CFMMRouter.jl, a Julia [Bez+17] package for
solving the optimal routing problem. Our implementation is available at

https://github.com/bcc-research/CFMMRouter.jl

and includes implementations for both weighted geometric mean CFMMs and Uniswap v3.
In this section, we provide a concrete Julia interface for our solver.

4.1 Markets

Market interface. As discussed in §2.3, the only function that the user needs to implement
to solve the routing problem for a given market is

find_arb!(∆, Λ, mkt, v).

This function solves the optimal arbitrage problem (8) for a market mkt (which holds the
relevant data about the trading set T) with dual variables v (corresponding to AT

i ν in the
original problem (8)). It then fills the vectors∆ and Λ with the negative part of the solution,
−∆⋆

−, and positive part of the solution, ∆⋆
+, respectively.

For certain common markets (e.g., geometric mean and Uniswap v3), we provide spe-
cialized, efficient implementations of find_arb!. For general CFMMs where the trading

12

function, its gradient, and the Hessian are easy to evaluate, one can use a general-purpose
primal-dual interior point solver. For other more complicated markets, a custom implemen-
tation may be required.

Swap markets. The discussion in §3 and the expression in (16) suggests a natural, minimal
interface for swap markets. Specifically, we can define a swap market by implementing the
function get_price(∆). This function takes in a vector of inputs∆∈ R2

+, where we assume
that only one of the two assets is being tendered, i.e., ∆1∆2 == 0, and returns f ′

1(∆1), if
∆1 > 0 or f ′

2(∆2) if ∆2 > 0. With this price impact function implemented, one can use
bisection to compute the solution to (16). When price impact function has a closed form
and is readily differentiable by hand, it is possible to use a much faster Newton method to
solve this problem. In the case where the function does not have a simple closed form, we
can use automatic differentiation (e.g., using ForwardDiff.jl [RLP16]) to generate the
gradients for this function.

Aggregate CFMMs. In the special case of aggregate, bounded liquidity CFMMs, the
price impact function often does not have a closed form. On the other hand, whenever the
active price intervals are disjoint, we can use the trick presented in §3.1 to quickly arbitrage
an aggregate CFMM. For example, a number of Uniswap v3 markets are actually composed
of many thousands of bounded liquidity CFMMs. Treating each of these as their own market,
without any additional considerations, significantly increases the size and solution complexity
of the problem.

In this special case, each aggregate market ‘contains’ s trading sets, each of which has
disjoint active price intervals with all others. We will write these intervals as (p−i , p

+
i) for each

trading set i = 1, . . . , s, and assume that these are in sorted order p+i−1 ≤ p−i < p+i ≤ p+i+1.
Given some dual variables ν1 and ν2 for which to solve the arbitrage problem (8), we can
then run binary search over the sorted intervals (taking O(log(s)) time) to find which of
the intervals the price ν1/ν2 lies in. We can compute the optimal arbitrage for this ‘active’
trading set, and note that the remaining trading sets all have a known optimal trade (from
the discussion in §3.1) and require only constant time. For Uniswap v3 and other aggregate
CFMMs, this algorithm is much more efficient from both a computational and memory
perspective when compared with a direct approach that considers all s trading sets separately.

Other functions. If one is solving the arbitrage problem multiple times in a row, it may
be helpful to implement the following additional functions:

1. swap!(cfmm, ∆): updates cfmm’s state following a trade ∆.

2. update_liquidity!(cfmm, [range,] L): adds some amount of liquidity L ∈ R2
+,

optionally includes some interval range = (p1, p2).

13

4.2 Utility functions.

Recall that the dual problem relies on a slightly transformed version of the Fenchel conjugate,
which is the optimal value of problem (7). To use LBFGS-B (and most other optimization
methods), we need to be able to evaluate this function Ū(ν) and its gradient ∇Ū(ν), which is
the solution Ψ⋆ to (7) with parameter ν. Thus, utility functions are implemented as objects
that implement the following interface:

• f(objective, v) evaluates Ū at v.

• grad!(g, objective, v) evaluates ∇Ū at v and stores it in g.

• lower_limit(objective) returns the lower bound of the objective.

• upper_limit(objective) returns the upper bound of the objective.

The lower and upper bounds can be found by deriving the conjugate function. For example,
for the ‘total arbitrage’ objective U(Ψ) = cTΨ − I(Ψ ≥ 0), where a trader wants to tender
no tokens to the network, but receive any positive amounts out with value proportional to
some nonnegative vector c ∈ Rn

+, has Ū(ν) = 0 if ν ≥ c and ∞ otherwise. Thus, we have
the bounds c ≤ ν <∞, and gradient ∇Ū(ν) = 0. We provide implementations for arbitrage
and for basket liquidations in our Julia package. (See [Ang+22b, §3] for definitions.)

5 Numerical results
We compare the performance of our solver against the commercial, off-the-shelf convex op-
timization solver Mosek, accessed through JuMP [DHL17; Leg+21]. In addition, we use our
solver with real, on-chain data to illustrate the benefit of routing an order through multiple
markets rather than trading with a single market. Our code is available at

https://github.com/bcc-research/router-experiments.

Performance. We first compare the performance of our solver against Mosek [ApS19], a
widely-used, performant commercial convex optimization solver. We generate m swap mar-
kets over a global universe of 2

√
m assets. Each market is randomly generated with reserves

uniformly sampled from the interval between 1000 and 2000, denoted Ri ∼ U(1000, 2000),
and is a constant product market with probability 0.5 and a weighted geometric mean mar-
ket with weights (0.8, 0.2) otherwise. (These types of swap markets are common in protocols
such as Balancer [MM19].) We run arbitrage over the set of markets, with ‘true prices’ for
each asset randomly generated as pi ∼ U(0, 1). For each m, we use the same parameters
(markets and price) for both our solver and Mosek. Mosek is configured with default param-
eters. All experiments are run on a MacBook Pro with a 2.3GHz 8-Core Intel i9 processor.
In figure 1, we see that as the number of pools (and tokens) grow, our method begins to
dramatically outperform Mosek and scales quite a bit better. We note that the weighted

14

Figure 1: Solve time of Mosek vs. CFMMRouter.jl (left) and the resulting objective values for
the arbitrage problem, with the dashed line indicating the relative increase in objective provided by
our method (right).

Figure 2: Average price of market sold ETH in routed vs. single-pool (left) and routed vs. single-
pool surplus liquidation value (right).

geometric mean markets are especially hard for Mosek, as they must be solved as power cone
constraints. Constant product markets may be represented as second order cone constraints,
which are quite a bit more efficient for many solvers. Furthermore, our method gives a
higher objective value, often by over 50%. We believe this increase stems from Mosek’s use
of an interior point method and numerical tolerances. The solution returned by Mosek for
each market will be strictly inside the associated trading set, but we know that any rational
trader will choose a trade on the boundary.

Real data: trading on chain. We show the efficacy of routing by considering a swap
from WETH to USDC (i.e., using the basket liquidation objective to sell WETH for USDC).
Using on-chain data from the end of a recent block, we show in figure 2 that as the trade
size increases, routing through multiple pools gives an increasingly better average price than
using the Uniswap v3 USDC-WETH .3% fee tier pool alone. Specifically, we route orders

15

through the USDC-WETH .3%, WETH-USDT .3%, and USDC-USDT .01% pools. This is
the simplest example in which we can hope to achieve improvements from routing, since two
possible routes are available to the seller: a direct route through the USDC-WETH pool;
and an indirect route that uses both the WETH-USDT pool and the USDC-USDT pool.

6 Conclusion
We constructed an efficient algorithm to solve the optimal routing problem. Our algorithm
parallelizes across markets and involves solving a series of optimal arbitrage problems at each
iteration. To facilitate efficient subproblem solutions, we introduced an interface for swap
markets, which includes aggregate CFMMs.

We note that we implicitly assume that the trading sets are known exactly when the
routing problem is solved. This assumption, however, ignores the realities of trading on
chain: unless our trades execute first in the next block, we are not guaranteed that the
trading sets for each market are the same as those in the last block. Transactions before
ours in the new block may have changed prices (and reserves) of some of the markets we are
routing through. This observation naturally suggests robust routing as a natural direction
for future research. Furthermore, efficient algorithms for routing with fixed transaction costs
(e.g., gas costs) are another interesting direction for future work (see [Ang+22b, §5] for the
problem formulation).

Acknowledgements
We thank Francesco Iannelli and Jiahao Song for contributing to the CFMMRouter.jl
documentation and the Financial Cryptography 2023 reviewers for helpful comments.

References
[AC20] Guillermo Angeris and Tarun Chitra. “Improved Price Oracles: Constant Func-

tion Market Makers.” In: Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies. AFT ’20: 2nd ACM Conference on Advances in Fi-
nancial Technologies. New York NY USA: ACM, Oct. 21, 2020, pp. 80–91.
isbn: 978-1-4503-8139-0. doi: 10.1145/3419614.3423251. (Visited on
02/17/2021).

[ACE22] Guillermo Angeris, Tarun Chitra, and Alex Evans. “When Does The Tail Wag
The Dog? Curvature and Market Making.” In: Cryptoeconomic Systems 2.1
(June 2022). Ed. by Reuben Youngblom.

[Ada+21] Hayden Adams et al. “Uniswap v3 Core.” In: (2021). url: https://uniswap.
org/whitepaper-v3.pdf.

16

https://doi.org/10.1145/3419614.3423251
https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper-v3.pdf

[Ang+20] Guillermo Angeris et al. “An Analysis of Uniswap Markets.” In: Cryptoeconomic
Systems (Nov. 25, 2020). In collab. with Reuben Youngblom. doi: 10.21428/
58320208.c9738e64. url: https://cryptoeconomicsystems.pubpub.
org/pub/angeris-uniswap-analysis (visited on 07/08/2021).

[Ang+22a] Guillermo Angeris et al. “Constant Function Market Makers: Multi-asset Trades
via Convex Optimization.” In: Handbook on Blockchain. Ed. by Duc A. Tran,
My T. Thai, and Bhaskar Krishnamachari. Cham: Springer International Pub-
lishing, 2022, pp. 415–444. isbn: 978-3-031-07535-3. doi: 10.1007/978-3-
031-07535-3_13.

[Ang+22b] Guillermo Angeris et al. “Optimal routing for constant function market makers.”
In: Proceedings of the 23rd ACM Conference on Economics and Computation.
2022, pp. 115–128.

[ApS19] MOSEK ApS. MOSEK Optimizer API for Python 9.1.5. 2019. url: https:
//docs.mosek.com/9.1/pythonapi/index.html.

[Ber16] Dimitri Bertsekas. Nonlinear Programming. Third edition. Belmont, Massachusetts:
Athena Scientific, 2016. 861 pp. isbn: 978-1-886529-05-2.

[Bez+17] Jeff Bezanson et al. “Julia: A Fresh Approach to Numerical Computing.” In:
SIAM Review 59.1 (Jan. 2017), pp. 65–98. issn: 0036-1445, 1095-7200. doi:
10.1137/141000671. url: https://epubs.siam.org/doi/10.
1137/141000671 (visited on 01/06/2020).

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. 1st ed. Cam-
bridge, United Kingdom: Cambridge University Press, 2004. 716 pp. isbn: 978-
0-521-83378-3.

[Byr+95] Richard H Byrd et al. “A limited memory algorithm for bound constrained
optimization.” In: SIAM Journal on scientific computing 16.5 (1995), pp. 1190–
1208.

[CKV21] Chris Coey, Lea Kapelevich, and Juan Pablo Vielma. Solving natural conic
formulations with Hypatia.jl. 2021. arXiv: 2005.01136 [math.OC].

[DHL17] Iain Dunning, Joey Huchette, and Miles Lubin. “JuMP: A Modeling Lan-
guage for Mathematical Optimization.” In: SIAM Review 59.2 (Jan. 2017),
pp. 295–320. issn: 0036-1445, 1095-7200. doi: 10.1137/15M1020575. url:
https://epubs.siam.org/doi/10.1137/15M1020575 (visited on
01/06/2020).

[DKP21] Vincent Danos, Hamza El Khalloufi, and Julien Prat. “Global Order Routing
on Exchange Networks.” In: Financial Cryptography and Data Security. FC
2021 International Workshops. Ed. by Matthew Bernhard et al. Vol. 12676.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2021, pp. 207–226. isbn: 978-3-
662-63957-3 978-3-662-63958-0. doi: 10.1007/978-3-662-63958-0_19.

17

https://doi.org/10.21428/58320208.c9738e64
https://doi.org/10.21428/58320208.c9738e64
https://cryptoeconomicsystems.pubpub.org/pub/angeris-uniswap-analysis
https://cryptoeconomicsystems.pubpub.org/pub/angeris-uniswap-analysis
https://doi.org/10.1007/978-3-031-07535-3_13
https://doi.org/10.1007/978-3-031-07535-3_13
https://docs.mosek.com/9.1/pythonapi/index.html
https://docs.mosek.com/9.1/pythonapi/index.html
https://doi.org/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://arxiv.org/abs/2005.01136
https://doi.org/10.1137/15M1020575
https://epubs.siam.org/doi/10.1137/15M1020575
https://doi.org/10.1007/978-3-662-63958-0_19

[DW60] George B Dantzig and Philip Wolfe. “Decomposition principle for linear pro-
grams.” In: Operations research 8.1 (1960), pp. 101–111.

[Ego] Michael Egorov. “StableSwap - Efficient Mechanism for Stablecoin Liquidity.”
In: (), p. 6. url: https://www.curve.fi/stableswap-paper.pdf.

[Leg+21] Benoît Legat et al. “MathOptInterface: A Data Structure for Mathematical
Optimization Problems.” In: INFORMS Journal on Computing (Oct. 22, 2021),
ijoc.2021.1067. issn: 1091-9856, 1526-5528. doi: 10.1287/ijoc.2021.
1067. url: http://pubsonline.informs.org/doi/10.1287/ijoc.
2021.1067 (visited on 02/08/2022).

[MM19] Fernando Martinelli and Nikolai Mushegian. “Balancer: A Non-Custodial Port-
folio Manager, Liquidity Provider, and Price Sensor.” In: (2019).

[MN11] José Luis Morales and Jorge Nocedal. “Remark on “Algorithm 778: L-BFGS-B:
Fortran subroutines for large-scale bound constrained optimization”.” In: ACM
Transactions on Mathematical Software (TOMS) 38.1 (2011), pp. 1–4.

[O’D+16] Brendan O’Donoghue et al. “Conic Optimization via Operator Splitting and
Homogeneous Self-Dual Embedding.” In: Journal of Optimization Theory and
Applications 169.3 (June 2016), pp. 1042–1068. issn: 0022-3239, 1573-2878.
doi: 10.1007/s10957-016-0892-3. url: http://link.springer.
com/10.1007/s10957-016-0892-3 (visited on 10/30/2020).

[RLP16] J. Revels, M. Lubin, and T. Papamarkou. “Forward-Mode Automatic Differenti-
ation in Julia.” In: arXiv:1607.07892 [cs.MS] (2016). url: https://arxiv.
org/abs/1607.07892.

[Wan+22] Ye Wang et al. “Cyclic Arbitrage in Decentralized Exchanges.” In: Companion
Proceedings of the Web Conference 2022. Virtual Event, Lyon France: ACM,
Apr. 2022, pp. 12–19. isbn: 978-1-4503-9130-6. doi: 10.1145/3487553.
3524201.

[ZCP18] Yi Zhang, Xiaohong Chen, and Daejun Park. “Formal Specification of Constant
Product (Xy=k) Market Maker Model and Implementation.” In: (2018).

[Zhu+97] Ciyou Zhu et al. “Algorithm 778: L-BFGS-B: Fortran subroutines for large-
scale bound-constrained optimization.” In: ACM Transactions on mathematical
software (TOMS) 23.4 (1997), pp. 550–560.

A Closed form solutions
Here, we cover some of the special cases where it is possible to analytically write down the
solutions to the arbitrage problems presented previously.

Geometric mean trading function. Some of the most popular swap markets, for exam-
ple, Uniswap v2 and most Balancer pools, which total over $2B in reserves, are geometric

18

https://www.curve.fi/stableswap-paper.pdf
https://doi.org/10.1287/ijoc.2021.1067
https://doi.org/10.1287/ijoc.2021.1067
http://pubsonline.informs.org/doi/10.1287/ijoc.2021.1067
http://pubsonline.informs.org/doi/10.1287/ijoc.2021.1067
https://doi.org/10.1007/s10957-016-0892-3
http://link.springer.com/10.1007/s10957-016-0892-3
http://link.springer.com/10.1007/s10957-016-0892-3
https://arxiv.org/abs/1607.07892
https://arxiv.org/abs/1607.07892
https://doi.org/10.1145/3487553.3524201
https://doi.org/10.1145/3487553.3524201

mean markets (5) with n = 2. This trading function can be written as

φ(R) = Rw
1 R

1−w
2 ,

where 0 < w < 1 is a fixed parameter. This very common trading function admits a closed-
form solution to the arbitrage problem (8). Using (12), we can write

f1(δ1) = R2

(
1−

(
1

1 + γδ1/R1

)η)
where η = w/(1− w). (A similar equation holds for f2.) Using (15) and (16), and defining

δ1 =
R1

γ

((
ηγ

ν2
ν1

R2

R1

)1/(η+1)

− 1

)
,

we have that δ⋆1 = max{δ1, 0} is an optimal point for (14). Note that when we take w = 1/2
then η = 1 and we recover the optimal arbitrage for Uniswap given in [Ang+20, App. A].

Bounded liquidity variation. The bounded liquidity variation (4) of the product trading
function satisfies the definition of bounded liquidity given in §3.1, whenever α, β > 0. We
can write the forward exchange function for the bounded liquidity product function (4),
using (12), as

f1(δ) = min

{
R2,

γδ(R2 + β)

R1 + γδ + α

}
The ‘min’ here comes from the definition of a CFMM: it will not accept trades which pay
out more than the available reserves. The maximum amount that a user can trade with this
market, which we will write as δ−1 , is when f1(δ

−
1) = R2, i.e.,

δ−1 =
1

γ

R2

β
(R1 + α).

(Note that this can also be derived by taking f1(δ1) = R2 in (12) with the invariant (4).)
This means that

f−
1 (δ

−
1) = γ

β2

(R1 + α)(R2 + β)
,

is the minimum supported price for asset 1. As before, a similar derivation yields the case
for asset 2. Writing k = (R1+α)(R2+β), we see that we only need to solve (14) if the price
ν1/ν2 is in the active interval (17),

γβ2

k
<

ν1
ν2

<
k

γα2
. (18)

Otherwise, we know one of the two ‘boundary’ solutions, δ−1 or δ−2 , suffices.

19

	Optimal routing
	Constant function market makers

	An efficient algorithm
	Dual decomposition
	The dual problem
	Solving the dual problem

	Swap markets
	General swap markets

	Implementation
	Markets
	Utility functions.

	Numerical results
	Conclusion
	Closed form solutions

