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Guille

November 2023

A general note

None of the solutions to these exercises should be more than a few lines long. If you find
yourself writing more than half a page or so for a solution, there’s probably a simpler way!
(Of course, finding the simpler way might not, itself, be so simple.) Problem parts beginning
with an (H) are harder problems.

1 Matrices

In this problem, we’ll discuss some properties of matrices. For this problem, let’s fix an
m × n matrix with elements in the field F, written A ∈ Fm×n. Denote the columns of A
by the m-vectors a1, . . . , an ∈ Fm. As a reminder, if we have an n-vector x ∈ Fn, then the
matrix-vector product between A and x, which we write as Ax, results in the vector

Ax = x1a1 + x2a2 + · · ·+ xnan, (1)

which is a linear combination of the columns of A with the scalars equaling the entries of
the vector x.

Part 1. Show that the matrix-vector product, as defined above, is linear, in other words
that, for any α ∈ F and any x ∈ Fn,

A(αx) = αAx,

and for any other vector y ∈ Fn,

A(x+ y) = Ax+ Ay.

(We will make use of this a lot in the proofs of the paper!)
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(H) Part 2. Let f : Fn → Fm be any linear function that maps n-vectors to m-vectors;
i.e., the function f is linear because it satisfies

f(αx) = αf(x)

and
f(x+ y) = f(x) + f(y),

for any scalar α ∈ F and any vectors x, y ∈ Fn. (Compare this with the definition above!)
Show that there exists some matrix A ∈ Fm×n such that

f(x) = Ax.

(The fact that every matrix corresponds to a linear function and every linear function cor-
responds to a matrix is the reason this field is called linear algebra.)

Hint. Note that every vector x ∈ Fn can be written as a linear combination of the basis
vectors,

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

 .

Part 3. Say we have a second linear function h : Fm → Fk. Let’s define the new function

w(x) = h(f(x)).

This new function w corresponds to taking the output f(x), which is an m-vector, and
passing it through h. Show that w is also linear.

(H) Part 4. From part 2, we know that w(x) = Dx for some matrix D ∈ Fk×n as it, too,
is a linear function. If f(x) = Ax and h(y) = By for some matrix B ∈ Fk×m, then what
does the matrix D correspond to in terms of A, B, or their corresponding columns?

(If you’ve seen linear algebra before, this question is ‘easy’ with outside tools, but you
should not use other knowledge of linear algebra for this question! Only the matrix-vector
product from the definition in (1) is necessary.)

2 Vector spaces

In this problem, we’ll explore some basic vector spaces that we talked about in the lecture.
As a reminder, we say that a set of n-vectors, V ⊆ Fn is a vector space if, for any two

vectors in this set, x, y ∈ V , and any two scalars α, β ∈ F, the linear combination of these
two vectors (with scalars α, β) are also in the set V ; i.e.,

αx+ βy ∈ V.
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Part 1. From the lecture, the range R(A) is defined as the set containing all possible linear
combinations of the columns of the matrix A. Written in set builder notation, this is

R(A) = {Ax | x ∈ Fn}.

Show that the range R(A) of any matrix A ∈ Fm×n is a vector space. (You are welcome to
use the solution to problem 1, part 1, even if you haven’t solved it.)

Part 2. Using the above, the paper shows in §1.1 that the set of evaluations of polynomials
of degree at most s on a fixed set of points is itself a vector space. In particular, if we fix a
set of points α1, . . . , αm ∈ F and we define the set of vectors

V = {(f(α1), f(α2), . . . , f(αm)) ∈ Fm | f is a polynomial of degree ≤ n− 1}, (2)

then this set V is a vector space. Flesh out the proof in the paper to show that this is indeed
a vector space! (As a side note, we will make use of this property in our proof of the security
of FRI.)

(H) Part 3. The paper also discusses the fact that, for every vector space V , there exists
a parity check matrix C ∈ Fk×m such that, for some vector x ∈ Fm, we have that x ∈ V if,
and only if, Cx = 0. Write out the parity check matrix corresponding to the vector space
defined in (2). Two hints: first, take a look at the definition of the Vandermonde matrix in
the paper. Second, look up Lagrange interpolation.

(H) Other fun. For bonus points, show that, indeed, every vector space has a parity check
matrix. You may assume that every vector space V has a matrix A such that R(A) = V
and that this matrix has linearly independent columns. (See below for a reminder of the
definition of linear independence.)

3 The ℓ0 ‘norm’

From before, remember that we defined the ‘norm’ ∥y∥0 of a vector y in a finite field as the
number of nonzero entries of the vector y. In math, that is

∥y∥0 = |{i | yi ̸= 0}|.

We will show three properties we will use throughout the paper.

Part 1. Show that ∥y∥0 = 0 if, and only if, y = 0. (This is called definiteness.)

Part 2. Show that, for any two vectors x, y ∈ Fn the triangle inequality holds; i.e.,

∥x+ y∥0 ≤ ∥x∥0 + ∥y∥0.
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Part 3. Show that the ℓ0 ‘norm’ is zero-homogeneous; i.e.,

∥αx∥0 = ∥x∥0,

for any α ∈ F that is nonzero, α ̸= 0. (This should be contrasted with a usual norm over
the reals or the complex numbers!)

Part 4. A usual thing to do in linear algebra over the real numbers is to take an inner
product of two vectors x and y with the same number of elements, n. This is defined as

xTy = x1y1 + x2y2 + · · ·+ xnyn.

The notion of orthogonality, that is, that two vectors x and y have inner product equal to
zero; i.e.,

xTy = 0,

plays a big role when the vectors’ elements are real numbers. In that case, if x and y are
orthogonal, we can say that x and y form a right angle, and, more importantly, no vector is
orthogonal to itself, except the all-zeros vector. Unfortunately this notion of orthogonality
is not so clear in finite fields.

Show that there is a finite field F and a nonzero vector x ∈ Fn that is orthogonal to
itself; i.e., the vector x satisfies xTx = 0. (You are free to choose n, the number of elements
in the vector.) Extend this example to show that, for any finite field F, there is always a
nonzero vector x ∈ Fn, that is orthogonal to itself. (As a hint, you should use the fact that
adding 1 to itself |F| times results in 0.)

4 Linear independence and distance

In this problem, we will relate the distance of a code with some basic properties of linear
independence.

From before, we define the distance d of a matrix G ∈ Fm×n as

d = min
x ̸=0

∥Gx∥0

where ∥y∥0 denotes the number of nonzero entries of the vector y. Similarly, we say that
a matrix G has linearly independent columns if its nullspace contains only the zero vector;
i.e., if

N (G) = {0},
where the nullspace N (G) is defined

N (G) = {y ∈ Fn | Gy = 0}.

A basic fact from linear algebra (which you are free to use here) is that any matrix G with
linearly independent columns has at least as many rows as it has columns; i.e., since G is
an m× n matrix, then m ≥ n.
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Part 1. Show that a generator matrix G is linearly independent if, and only if, its distance
d is positive, d > 0.

Part 2. Given a matrix G which has some distance d > 0, show that we can remove any
d− 1 rows to get a new matrix G̃ ∈ F(m−d+1)×n that also has linearly independent columns.
Argue that this means that the distance must satisfy

d ≤ m− n+ 1.

(This bound on the distance is known as the Singleton bound in coding theory.) Codes that
achieve this bound at equality are known as ‘maximum-distance separable’ or MDS codes.

As a fun sidenote: if G is a generator matrix for the Reed–Solomon code (see §1.3.2),
then we know that d = m−n+1, making the Reed–Solomon code an MDS code. In a sense,
it is the highest-distance code for the chosen dimensions (message length and block size).

5 (Probabilistic?) Implications

In this section, we’ll explore both ‘traditional’ logic implications and probabilistic logic im-
plications. As a reminder, given two statements P and Q, we say P implies Q when

¬(P ∧ ¬Q). (3)

As a second reminder, given random variables r and r′ which are taken from some (known)
distribution and statements Pr and Qr′ , each depending on the randomness of r and r′, then
we say that

Pr =⇒
p

Qr′

whenever Pr(Pr ∧ ¬Qr′) ≤ p.

Part 1. Show that if P implies Q and Q implies T , then P implies T using the definition
of implication given above in (3). You will need to assume the law of excluded middle: either
Q or ¬Q. This is called the transitivity of implication.

(It is actually possible to have logic without the law of excluded middle, but implications
must be defined differently for transitivity to hold. Lucky for us, we only deal with finite—if
very large—sets so we can forget any of this conversation ever happened.)

Part 2. Prove that the probabilistic implications have a similar transitivity property; in
particular, if Pr =⇒

p
Qr′ and Qr′ =⇒

p′
Tr′′ then Pr =⇒

p+p′
Tr′′ . (This proof is provided in

appendix A of the paper, but you are encouraged to only peek if you need a hint :)
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Part 3. A common special case will be to take Q to be a deterministic event (i.e., the
statement does not depend on any randomness). This is true in many ZK protocols as we
want to ensure some logical (i.e., deterministic) statement is true but somehow ‘reduce’ this
claim down to an easier-to-check claim over a smaller statement with some randomness.

First, show that in this case, Pr =⇒
p

Q is the same as the statement

Pr(Pr) ≤ p

when ¬Q. (In some way, we may think of this as: the probability of Pr, given ¬Q, is less
than p. If p is very small, like 2−80, yet we observe Pr, then it is very unlikely that ¬Q.)

Second, let’s say we have n statements, all depending on the same randomness r, given
by P 1

r =⇒
p

Q1, P 2
r =⇒

p
Q2, until, P n

r =⇒
p

Qn. Show that

P 1
r ∧ P 2

r ∧ · · · ∧ P n
r =⇒

p
Q1 ∧Q2 ∧ · · · ∧Qn.

(We use a special case of this fact in the proof in §3.1.2 in the paper.) Hint. This should
be very simple. If you find yourself writing more than a few lines, then it’s likely you’re
overthinking it!
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