
The Accidental Computer: Polynomial Commitments
from Data Availability

Alex Evans
aevans@baincapital.com

Guillermo Angeris
gangeris@baincapital.com

January 2025

Abstract

In this paper, we present two simple variations of a data availability scheme that
allow it to function as a multilinear polynomial commitment scheme over the data in
a block. The first variation enables commitments over all of the block’s data with
zero prover overhead: the data availability construction simply serves both purposes.
The second variation allows commitments over subsets of data with nonzero but still
concretely small proving costs, since most work is already done during data encoding.
Since, in many succinct proof systems, opening a polynomial commitment contributes
significantly to prover costs, our construction enables the prover to reuse work already
done by the data availability scheme, reducing—or wholly removing—work associated
with the polynomial commitment scheme.

1 Introduction

Blockchains, as their name suggests, are composed of an ordered list of blocks. These blocks
may include the data associated with financial transactions, payments, or even social media
posts and interactions. An important part of this construction is that, as new blocks are
added to this list, these new blocks must satisfy some computational rules (or predicates)
which ensure that the data in the blocks is valid. For example, one (of potentially many)
rules to be enforced may be that no transaction in the block may transfer more money out of
an account than the account has available; i.e., that account balances may not be negative.
The list of such predicates is often called the state transition function of a blockchain: the
predicates ensure that the latest state of the blockchain, once it has been modified by the
transactions of a block, is still a valid end state.

Designs. In early blockchain designs, verifying the state transition function required down-
loading all transaction data for each block and verifying the predicates for all downloaded
blocks. As blockchains scale to support more concurrent users, and therefore bigger blocks

1

with more transactions, resource-constrained nodes can no longer participate in this valida-
tion. As a result, blockchains faced a hard trade-off between scalability and decentralization.
A proposed solution to this problem is to enable so-called verifying light clients [ASB18].
These resource-constrained clients should be able to verify the validity of the chain without
needing to download all blocks and verify the validity of each. To this aim, a light client
must ensure that (a) the state transition function correctly verifies without re-executing it
on all blocks, while also (b) verifying that the transaction data in the blocks is accessible
and unique, ideally without needing to download all transaction data.

Succinct proofs. To address this scalability issue, blockchains have turned to succinct
proofs [Tha22,EA23]—short proofs which enable the verification of some statement in much
less time than is required to evaluate the statement in the first place. Succinct proofs solve
problem (a) by design: light clients wish to verify some predicate on data and receive a
succinct proof that this predicate indeed evaluates to ‘true’. Since this proof is often much
easier to verify than actually computing the result of the predicate on the given data, light
nodes can easily perform the verification work of (a) even on very small machines such as
phones or laptops.

Data availability. This leaves the verification work of (b); i.e., ensuring that the data over
which the succinct proof is constructed is available to download. If the blocks are of small
size, this is relatively simple: the light node just downloads the whole block and verifies that
the predicate passes. As blocks scale, this becomes more difficult on devices with limited
bandwidth. To this end, data availability protocols such as [ASB18,HSW23,HSW24,EMA24]
have been constructed. These allow light nodes to download only small parts of the latest
block to ensure that the data is available.

Simple observations. One simple observation is that a significant portion of the work
done in the construction of many succinct proofs is in encoding some statement (using a
linear code, for example). This is also the same work done in the encoding step of many
data availability schemes. A natural question then, is: can we re-use the encoding and/or
sampling work done in the data availability scheme to reduce the work required to prove or
verify a succinct proof over this data?

This work. In this work, we show that it is possible to enable two types of state transition
functions to be succinctly verified for a blockchain running a data availability scheme such
as the ZODA tensor variation [EMA24, App. E]. In particular, any blockchain which runs
the encoding and sampling steps described above can reuse much (if not all) of the work
done in the encoding and sampling steps to efficiently prove a statement over the data of the
latest block. This can, in turn, be verified by the light clients without requiring the whole
block be downloaded. We also suspect this observation is widely applicable to a number of
other data availability schemes such as suitable adaptations of FRIDA [HSW24] that support
multilinear evaluation, but focus on this special case in order to give a practical construction.

2

2 Tensor ZODA variation

In this section, we give a brief introduction to the tensor ZODA variation of [EMA24, App. E],
along with its guarantees, which we use in what follows. In this section, and in the rest of
the note, we will have two (linear) codes G ∈ Fm×n and G′ ∈ Fm′×n′

over some finite field F,
each with distance d. (The protocol is flexible enough to allow for different distances, but
we assume this for convenience, leaving the relatively simple extension for later.) We denote
X̃ ∈ Fn×n′

as the data for which we wish to both encode and prove correctness. We set
∥X∥ to be the number of nonzero rows of a matrix X ∈ Fm×m′

and interpret any n-vectors
as n × 1 matrices, when convenient, such that ∥x∥ is the number of nonzero entries of the
n-vector x ∈ Fn. For a matrix X, given a subset of indices S ⊆ {1, . . . ,m}, we write XS for
the submatrix containing the S rows of X (in any standard order). Finally, we define

ḡr = (1− r1, r1)⊗ · · · ⊗ (1− rk, rk), (1)

where r1, . . . , rk ∈ F are uniformly randomly drawn and ⊗ denotes the Kronecker product

such that ḡr ∈ F2k and similarly for ḡ′r′ ∈ F2k
′
. This type of ‘structured randomness’

(sometimes called logarithmic randomness [DP24b,AER24]) will allow us later to efficiently
evaluate a polynomial whose coefficients are in X̃.

2.1 Tensor ZODA variation

The two relevant parts of the tensor ZODA protocol we use in this paper are those of the
encoder and those of the sampler. We will see in what follows that the encoder is essentially
performing most of the work needed to prove that a particular row or collection of rows
from X̃, when interpreted as the coefficients of some multilinear polynomial, evaluates to
some stated value. As a side effect, we will also see that almost all of the work needed
to show that the entirety of X̃, when viewed as the coefficients of a multilinear polynomial,
evaluates to some value, queried at a uniformly random point. These polynomial evaluations
and corresponding proofs usually make up a significant proportion of the proving time in a
succinct proof system. Since the work to construct these proofs already needs to be done to
prove the correctness of the encoding and is already needed for data availability sampling,
this results in potentially substantial net savings in both computation and communication
for the sampler node to verify proofs over the committed data X̃.

2.2 Encoder algorithm

The work of the encoder algorithm is relatively simple. It begins with the data matrix
X̃ ∈ Fn×n′

and is described below.

1. Encode X̃ to get Z = GX̃G′T

2. Commit to the rows of Z and, separately, to the columns of Z

3. Receive some uniform randomness r ∈ Fk, r′ ∈ Fk′ and construct ḡr ∈ Fn′
and ḡ′r′ ∈ Fn

3

4. Compute yr = X̃ḡr and wr′ = X̃T ḡ′r′

5. Send yr and wr′

We note that the randomness here is public coin and can therefore be either sent by the
sampler or, in more practical settings, derived using the Fiat–Shamir heuristic from the
commitments to the rows and columns of Z. Additionally, though we do not explicitly
do so here for compactness, the randomness may be drawn not just from the field F, but,
indeed, from any field extension F′ ⊇ F to decrease the error probability of a test erroneously
passing. Finally, we have implicitly assumed that n and n′ are powers of two in order to be
compatible with the construction of ḡr and ḡ′r′ in (1), although it is easy to extend to the
more general setting.

2.3 Sampler algorithm

The sampler algorithm is also relatively simple. Note that since the commitments to the
rows and columns of Z are not a-priori known to be of the same matrix, we will call Y the
matrix whose commitment should correspond to the rows of Z and W the matrix which
should correspond to the columns. (The verifier will then convince itself that indeed Y and
W are close to the rows and columns, respectively, of GX̃G′T , the tensor encoding of some
matrix X̃.) We assume that the randomly drawn elements ḡr and ḡ′r′ are publicly known
and that yr and wr′ have been received by the sampler. All received rows and columns are
also assumed to be checked against the commitments provided by the encoder.

1. Receive two commitments, one over the rows of Y and one over the columns of W

2. Uniformly sample S ⊆ {1, . . . ,m} of (fixed) size |S|

3. Uniformly sample S ′ ⊆ {1, . . . ,m′} of (fixed) size |S ′| = |S|

4. Receive the S rows of Y and S ′ columns of W (i.e., receive (W T)S′)

5. Verify the received rows of Y are codewords of G′; i.e., that YS = ȲSG
′T

6. Verify the received columns of W are codewords of G; i.e., that (W T)S′ = W̄S′GT

7. Verify that ȲS ḡr = GSyr

8. Verify that (W̄ T)S′ ḡ′r′ = G′
S′wr′

9. Verify that ḡ′Tr′ yr = wT
r′ ḡr

If any verification step fails, the sampler running this algorithm does not accept. For a
‘pictorial’ representation of the committed matrices Y and W , and the vectors yr and wr′ ,
see figure 1. In this figure, the dashed entries indicate that these are (systematic) encodings
of the underlying vectors. Finally, the check in step 5 (and similarly for 6) can be interpreted
as ‘there exists a matrix ȲS whose row encodings match the S subsampled rows of Y ’; that
is, that each of the S subsampled rows of Y are indeed encodings of some messages, via G′T .

4

Y

W

yr

wr′

Figure 1: An illustration of the encoded square and the corresponding proofs used by the sampler
to verify correctness.

High level interpretation. The idea here is that the sampler is, roughly speaking, re-
ceiving a structured random linear combination of the columns of the unencoded message
(yr) and verifying that this combination, after encoding, is consistent with a small number
of randomly checked rows of Y . (The verifier also checks that each of these rows are a valid
codeword, since Y is supposed to be a tensor code.) This implies that the matrix Y is
(row-wise) close to some unique, tensor encoded matrix GỸ G′T . A similar thing is true for
W and some matrix G′W̃GT , except over its columns, instead of its rows. Finally, the last
step simply checks that taking a structured random linear combination of the columns of
the unencoded message (using ḡr) and then combining this result (using ḡ′r′) is the same as
taking a structured random linear combination of the rows of the unencoded message (using
ḡ′r′) and then combining the result (using ḡr), which allows the sampler to conclude that,
indeed Ỹ = W̃ T .

Discussion. While verifying that the received rows and columns of Y andW are codewords
and decoding to Ỹ and W̃ may seem like a computationally expensive task, we note that, in

5

most cases, G and G′ are systematic codes (i.e., the message corresponding to the codeword
is part of the codeword itself) and hence can be easily checked by encoding the appropriate
entries of Y and W . We assume this for the rest of the paper for convenience, but note that
it is not strictly necessary as the encoder can simply send the corresponding codewords ỸS

and W̃S′ to the sampler who can verify the results against the respective committed rows and
columns. Finally, there is no strong requirement that |S| = |S ′| (and this flexibility might
be helpful if G and G′ have different relative distances) but, for convenience, we assume that
|S| = |S ′| and that d = d′ since we expect this will be the standard choice in practice.

2.4 Guarantees

While the sampling algorithm presented above [EMA24] provides a number of useful guaran-
tees, we will use three important ones and present proofs of their correctness in appendix A.

Unique decoding. The first is that the sampler, upon a successful completion of the
sampling algorithm, knows that there exists a unique matrix X̃ ∈ Fn×n′

which is closest to
the committed matrix Z. More specifically, the rows of a tensor encoding of X̃ are close to
the rows of Y and the columns of the tensor encoding are close to the columns of W within
the unique decoding radius; i.e.,

∥Y −GX̃G′T∥ < d/3 and ∥W T −G′X̃TGT∥ < d/3, (2)

except with error probability no more than(
1− d

3m

)|S|

+
k(d+ 9)

3|F|
, (3)

over the randomness ḡr, ḡ
′
r′ , S, and S ′. (The constants can be slightly improved if G and G′

are Reed–Solomon codes [DG24], but we do not do so here for simplicity.)

Matrix-vector product. The second is that the received vector yr satisfies

yr = X̃ḡr, (4)

where X̃ is the unique matrix of (2), except with error probability no more than the one given
in (3). (A similar thing is true for wr′ and ḡ′r′ in that wr′ = X̃T ḡ′r′ except with probability
no more than given in (3).) Note that equation (4) is an exact equality and will be used in
what comes next.

Correct encoding. Finally, any sampler that has run the sampling algorithm will have,
using the previously-derived matrix-vector product property, a guarantee that any of the S
received rows of Y (or columns of W) correspond to correctly encoded rows of the unique
X̃; i.e.,

YS = GSX̃G′T .

6

Except with error probability no more than that of (3). Additionally, any further received
rows of Y , say S̃ ⊆ {1, . . . ,m} which also satisfy

YS̃ ḡr = GS̃yr,

will also have the property that they are correctly encoded rows of X̃:

YS̃ = GS̃X̃G′T ,

again, except with error probability no more than (3).

Discussion. We will see how to use each of these properties in the next two sections,
in two different settings, to significantly reduce the amount of proving work that has to
be performed. In the first setting, we will prove a statement over the complete block. In
the second setting, we will prove a statement over some (fixed) subset of the data in a
provided block. The idea here is that during both the encoding and the sampling steps, the
encoder (and sampler) have performed most of the work needed to open a polynomial over
the underlying data at a given point. Since the encoding and sampling algorithms already
need to be run to ensure the data is available, this substantially reduces the work necessary
to prove a statement over the underlying data.

3 An aside on succinct proofs

We will briefly discuss a very high level view of how one might succinctly prove a general
computation over some piece of data has been correctly performed. Readers very familiar
with general purpose succinct proof systems such as GKR [GKR08,ZGK+17,Tha22] should
feel free to skip this section and continue to the next.

GKR protocol. In a general computation, we would like to show that some function C,
defined as some finite computation, when evaluated on the inputs X̃, has some output, say
C(X̃) = z. It is not hard to show—though involved to make precise—that any (finite)
computation may be represented as a sequence of additions and multiplications over a finite
field. The GKR protocol [GKR08] (and its improvements [ZGK+17,XZZ+19]) are a way of
succinctly reducing the verification of C(X̃) = z (which may be constructed as a sequence
of addition and multiplication gates) to verifying that X̃, when viewed as the coefficients of
a multilinear polynomial, evaluates to a particular value at a chosen point. The overhead of
this reduction is concretely very small for many practical computations [Mod24].

Polynomial evaluation step. More specifically, the GKR protocol reduces the verifica-
tion of C(X̃) = z to evaluating the expression

((1− r′1, r
′
1)⊗ · · · ⊗ (1− r′k′ , 1− r′k′))

T X̃((1− r1, r1)⊗ . . . (1− rk, rk)), (5)

7

where r1, . . . , rk ∈ F and r′1, . . . , r
′
k′ ∈ F are some entries and, say, X̃ ∈ F2k

′×2k has side
lengths which are powers of two. (Indeed, these entries will correspond to the random
indices of ḡr and ḡr′ ; cf., (1).) This final evaluation step is often a significant part of both the
computational and communication cost of a succinct proof. Another important observation
we use is that we may view

X̃((1− r1, r1)⊗ . . . (1− rk, rk))

as a partial evaluation of the polynomial with coefficients given in X̃. This is called a partial
evaluation as, interpreting X̃ as the coefficients of some multilinear polynomial of k + k′

variables, this operation corresponds to partially evaluating the polynomial over the first k
variables, r1, . . . , rk, leaving the remaining variables (those corresponding to r′1, . . . , r

′
k′) free.

Multilinear PCS. Another important set of protocols which we will use are protocols
for multilinear evaluation based on interactive oracle proofs of proximity (IOPPs) such as
WHIR [ACFY24], FRI-Binius [DP24a], and BaseFold [ZCF24]. (For the rest of the paper,
we will use ‘WHIR’ as the standard protocol, but others would work equally well.) At a
very high level, these protocols take a commitment to an encoded message Gx̃, where x̃ is
the message, and efficiently evaluate

x̃T ((1− r1, r1)⊗ . . . (1− rk, rk)),

for some stated values r ∈ Fk by opening the encoding at a small number of places and per-
forming some additional checks. In ‘standard’ WHIR, FRI-Binius, and BaseFold, a meaning-
ful portion of the computational work for the prover is spent computing the initial encoding
of the message Gx̃. We will show that this initial computational work is already done by the
encoder in its encoding step and can be very easily verified. Additionally, one important part
of either of these schemes is that we may efficiently batch many evaluations. For example,
given a number of messages stacked in the rows of a matrix T̃ , we can efficiently prove that

T̃ ((1− r1, r1)⊗ . . . (1− rk, rk)) = ur.

Goal. What we will show next is that any sampler has essentially performed much of the
work of evaluating expression (5) over the unique data matrix X̃ encoded by the encoder §2.4
and can, with only a small amount of overhead, also evaluate the multilinear polynomial
whose coefficients correspond to a subset of the rows of X̃. The former is very useful for
chains that control all contents of X̃ and wish to verify, say, that a state transition function
on input X̃ is executed ‘correctly’. The latter is very useful for multiple rollups, each of
which post their data to specific rows of X̃, who wish to verify some computation over their
specific subset of the data.

Other protocols. We focus on the explicit case of GKR for this paper in order to have
a concrete construction, but note that (essentially) any succinct proof system which uses a
multilinear polynomial commitment scheme over the underlying data as part of its proof can
use the techniques and constructions of this paper to reduce both proof size and computation.

8

4 Complete evaluation

In the case where a complete evaluation is necessary (for example, in the case of ‘monolithic
chains’ who control the complete contents of X̃ and have a known function C for verify-
ing the state; i.e., chains that wish to verify C(X̃) = z), a very simple amendment to the
encoder algorithm and sampling procedure allows the sampler to evaluate (5) with no addi-
tional communication and computation. In other words, other than proving or verifying the
GKR proof (minus the final polynomial evaluation), there is no additional communication or
computation necessary to evaluate the polynomial (5). For simplicity, as in the presentation

of §2, we will assume that X̃ has side lengths which are powers of two, X̃ ∈ F2k×2k
′
.

4.1 Amendment to encoding and sampling

Here, we will show how to amend the encoding and sampling algorithms to allow for the
efficient evaluation of (5).

Encoder. To do this, the encoder (or, equivalently, prover in this case) first commits to
the supposed encoding of X̃ and runs the GKR protocol’s proving step. (In other words, the
encoder runs steps 1 and 2 of the encoder algorithm §2.2 and then runs the GKR protocol’s
proving step.) From the GKR protocol, using the Fiat–Shamir heuristic, the prover will
receive some randomness which it then uses to run the rest of the protocol. From the matrix-
vector product property (§2.4) and the fact that ḡr are using logarithmic randomness, we
know that yr is the partial evaluation of X̃:

yr = X̃ḡr = X̃((1− r1, r1)⊗ . . . (1− rk, rk)), (6)

except with probability of error no more than that of (3).

Sampler. The sampler receives the GKR proof (without the final polynomial evaluation)
and then verifies all steps of the sampling algorithm. Finally, in the last step of the sampling
algorithm, note that the sampler has computed

ḡ′Tr′ yr = ((1− r′1, r
′
1)⊗ · · · ⊗ (1− r′k′ , 1− r′k′))

Tyr̄,

which, combined with (6), is exactly the complete evaluation (5).

Cost. Note first that the only additional cost over running the vanilla protocol of §2 is that
of the intermediate steps of the GKR proof, which, for many practical circuits is concretely
small in both communication and computation.

GKR circuits for base layers. In general, data availability blockchains such as Celestia
attempt to remain as minimal as possible and support only the smallest subset of necessary
computation needed to enable their use. For example, in the case of Celestia, most of

9

the computation comes from verifying that payments have been made for included data,
verification of IBC transfers [Cel25], and verification of signatures. These computations can,
in principle, be expressed as data-parallel circuits, making them well-suited for GKR proofs
with little extra overhead compared to directly verifying the computations. In the general
setting, the data availability chain need not be aware of the specific computations being
performed by the rollup. However, when the prover and the encoder are run by the same
entity, data commitments can precede GKR proving, condensing the two constraints in step
5 above to one.

5 Evaluation over subset of rows

In this section, we will show how to ‘re-use’ the work done in the encoding and sampling steps
of the protocol to substantially lower the amount of work needed to construct a multilinear
polynomial evaluation over a subset of the rows of X̃, as opposed to the whole matrix.
Additionally, unlike in the previous amendment where we assumed the computation was
known to the encoder when performing the encoding step (as is the case where, e.g., a
protocol is using its own data availability layer exclusively), in this amendment the encoder
will not need to know anything about the statement (the function C) to be proven. This
fact is very useful in the practical setting where, for example, many distinct protocols (or
rollups) share the same ‘large’ data block X̃, whose availability is maintained by an external
protocol. Each rollup does not need to read nor prove a statement over all of the data in
the block X̃, only some subset of it, while the external protocol does not need to know
anything about these operations other than ensuring the relevant data is correctly encoded
and available.

5.1 Requirements

In this setting, a rollup has some predicate, usually some equality C(X̃R) = z over some
subset of the rows R ⊆ {1, . . . , n}, that must be satisfied—see figure 2 for an illustration.
(For example, such a predicate might require that balances posted to X̃ by the rollup are
nonnegative and that transfers of assets between accounts on the rollup have been netted
out correctly.) In this setting, the encoder is still present but there is an additional
rollup prover (distinct from the encoder) who will seek to convince a light client that the
predicate is satisfied and the data X̃R corresponds to the data which the encoder has encoded.
As the name ‘light client’ suggests, the amount of data that can be downloaded by and
computational power available on this client are limited and any algorithms it runs must be
relatively lightweight.

Verifier requirements. The up prover must convince a light client that: (1) the rollup’s
relevant data X̃R can be uniquely recovered from the commitments provided by the encoder
and (2) the predicate is indeed satisfied by this X̃R in that, say, C(X̃R) = z. For now we
will assume that the light client has run the sampling algorithm of §2.3 and therefore has

10

XR

Figure 2: Subset of rows of interest. The lightly shaded region denotes an encoding of the rows
of the data such that XR = X̃RG

′T .

the guarantees of X̃ provided in §2.4 with the bound of (3). (We will discuss later how to
reduce these requirements for the light client.)

5.2 Protocol amendments

There are almost no amendments to the encoder and sampler algorithms, but we will define
the behavior of the rollup prover and light clients in what follows.

Encoder and sampler. The encoder and sampler algorithms are identical to the ones
described in §2.2 and §2.3, respectively.

Rollup prover. The rollup prover first verifies that the sampling algorithm passes (to
ensure that the data is indeed correctly encoded) after receiving the logarithmic randomness
ḡr, the vector yr, and the commitment to Y as part of the protocol. It then runs the steps
we present below. We will assume the data relevant to the rollup is in the R ⊆ {1, . . . , n}
rows of X̃ ∈ Fn×n′

, the (unique) matrix known to exist from the sampling algorithm and,
for simplicity, assume that the encoding is systematic such that GRX̃ = X̃R.

1. Download the R rows of Y and verify that they are valid encodings; i.e., YR = ȲRG
′T

2. Verify that ȲRḡr = GRyr (this will imply that ȲR = GRX̃ = X̃R, with high probability)

3. Run GKR to reduce verifying C(ȲR) = z to checking that ḡTr̄ ȲRḡ
′
r̄′ = t, for some t ∈ F

11

4. Receive this structured randomness ḡr̄ ∈ F|R| and ḡ′r̄′ ∈ Fn′
from the final step of GKR

5. Compute the partial evaluation ur′ = ȲRg
′
r̄

6. Run WHIR’s proving step with two constraints (1) ȲRḡ
′
r̄′ = ur′ and (2) step 2’s check

(i.e., two multilinear evaluation constraints, which can be efficiently batched)

7. Send the GKR and WHIR proofs, along with the output ur′ , to the light node

By the correct encoding guarantee given in §2.4 and the fact that G is systematic, we know
that ỸR = X̃R with high probability. We note that the savings here come from the fact that
one of the most expensive steps, namely the encoding of the rows of ỸR = X̃R, has already
been performed and can be easily verified by anyone who has already run the sampler. The
rollup prover can then ‘piggyback’ off of the work already performed to reduce both the
proof size and amount of computation needed to prove the statement C(ỸR) = z. In the
case where Basefold [ZCF24] or FRI-Binius [DP24a] are used, the rollup prover’s work as
part of the PCS is linear time since the n log n component is outsourced to the DA encoder.
Using WHIR [ACFY24], the rollup prover still has to compute encodings in subsequent folds,
incurring n log n cost, but we expect the concrete difference to be small enough to justify
a smaller proof size and more efficient verifier. Finally, we note that WHIR can capture
arbitrary sumcheck-like constraints, but we do not exploit this flexibility here. For example,
it may be possible, using this observation, to further reduce overhead by incorporating GKR’s
final sumcheck layer into the WHIR constraint, evaluated directly on the input layer.

Light node. We assume that the light node has also first verified that the sampling al-
gorithm has passed. (It can do this by running the usual sampling algorithm, or, e.g., by
receiving a recursive proof that the sampling algorithm was correctly performed.) The light
node then simply verifies that the received proofs given by the rollup prover are correct
for the provided inputs (which it knows are available as it has checked that the sampling
algorithm has passed) and then simply verifies that ḡTr̄ ur̄′ = t to ensure that the claimed
evaluations are equal.

5.3 Discussion

Inclusion and hashing. Using this simple construction, we note that the light node is
convinced of both inclusion of the input data (enforced by the proof generated in step 6
of the rollup prover’s algorithm) and correctness of execution. Since a meaningful portion
of the WHIR proving time, especially for large folding factors, is spent constructing and
committing to the first oracle, the prover reduces proving time significantly (by outsourcing
the top layer to the DA encoder). Additionally, the prover does not need to compute inclu-
sion proofs against the encoded data square by computing hashes in-circuit as in existing
protocols [Sov24] as inclusion is guaranteed by the checks done by the sampling algorithm.
Since protocols such as Celestia [Cel24] use hash functions that are expensive to prove, this
provides additional non-negligible savings for the rollup prover and the light node.

12

Zero-change. Another important observation involves that this protocol is essentially
zero-change for any data availability layer that already performs tensor encodings. In partic-
ular, any party can compute the corresponding ZODA proofs given by yr and wr′ , including
the rollup prover, for, e.g., data availability layers that do not have succinctly verifiable en-
codings. The rollup prover is also, of course, independent of the encoder and samplers, who
can continue running the original protocol and the additional proofs (which are concretely
small) can be sent out-of-band for clients who wish to accept them.

Attack on Fiat-Shamir. During the preparation of this manuscript, the following attack
on ‘large enough’ concrete instantiations of GKR [KRS25] was published. The authors show
that the GKR protocol, when instantiated as a non-interactive argument with a concrete
hash function, is not sound for a certain category of circuits. We note that the construction
presented assumes GKR circuits of a sufficient depth. On the other hand, from the discussion
of §4.1, it is assumed that the GKR circuits we discuss are ‘minimal’ in that they are only
used for verifying a small amount of particular computation. For deeper circuits, their
attack requires careful auditing of public circuits or by implementing some of their proposed
mitigations (some of which impose a performance penalty).

6 Conclusion

We have shown how to reuse encoding and sampling work as part of a data availability
construction to substantially reduce the work required to prove the validity of a blockchain’s
state transition function. When the state transition function is defined over all data posted
to the data availability layer, we have shown how to entirely remove work associated with
committing and opening polynomials by leveraging the work done during the encoding pro-
cess of the data availability layer. When the state transition function depends on a subset of
the data in the data availability layer, we have shown how to substantially reduce the work
necessary to commit and open the polynomial associated with this subset of the data. We
expect that this latter construction will be useful for many rollups and other blockchains
that share data availability layers.

Future work. While our construction utilizes the GKR protocol, it is plausible that the
insights of this work may apply to other constructions and arithmetizations. The insights are,
for example, directly applicable to other succinct proof systems that require commitments
only to the inputs to the computation, such as the interactive proof protocol for matrix
multiplication of [Tha22, §4.4]. Similar techniques may apply to other constructions and
arithmetizations as well, though we do not explore these here.

13

Acknowledgments

The authors would like to thank Preston Evans for carefully reading an early draft of this
paper and suggesting a number of changes, many of which we incorporated. The authors
would also like to thank Ryan Cao and Vishruti Ganesh for carefully and patiently explaining
the mechanics of GKR, along with Steven Smith, Giorgos Zirdelis, and Daniel Shorr for
providing feedback on an early presentation of the results of this paper. Finally, the authors
would like to thank Nicolas Mohnblatt and Giacomo Fenzi for helpful conversations on WHIR
and its construction.

References

[ACFY24] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. WHIR:
Reed–solomon proximity testing with super-fast verification. Cryptology ePrint
Archive, Paper 2024/1586, 2024.

[AER24] Guillermo Angeris, Alex Evans, and Gyumin Roh. A note on Ligero and logarith-
mic randomness. Cryptology ePrint Archive, Paper 2024/1399, 2024.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubra-
maniam. Ligero: Lightweight sublinear arguments without a trusted setup. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 2087–2104, Dallas Texas USA, October 2017. ACM.

[ASB18] Mustafa Al-Bassam, Alberto Sonnino, and Vitalik Buterin. Fraud proofs: Maximis-
ing light client security and scaling blockchains with dishonest majorities. CoRR,
abs/1809.09044, 2018.

[Cel24] Celestia Documentation. Celestia’s data availability layer, 2024. Accessed: 14
September 2024.

[Cel25] Celestia Docs. IBC relaying guide, 2025. Retrieved January 20, 2025.

[DG24] Benjamin E. Diamond and Angus Gruen. Proximity gaps in interleaved codes.
Cryptology ePrint Archive, Paper 2024/1351, 2024.

[DP24a] Benjamin E. Diamond and Jim Posen. Polylogarithmic proofs for multilinears over
binary towers. Cryptology ePrint Archive, Paper 2024/504, 2024.

[DP24b] Benjamin E. Diamond and Jim Posen. Proximity testing with logarithmic random-
ness. IACR Commun. Cryptol., 1(1):2, 2024.

[EA23] Alex Evans and Guillermo Angeris. Succinct proofs and linear algebra. Cryptology
ePrint Archive, Paper 2023/1478, 2023.

14

[EMA24] Alex Evans, Nicolas Mohnblatt, and Guillermo Angeris. ZODA: Zero-overhead
data availability. Cryptology ePrint Archive, Paper 2025/034, 2024.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating com-
putation: Interactive proofs for muggles. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing (STOC ’08), pages 113–122, New York, NY,
USA, 2008. ACM.

[HSW23] Mathias Hall-Andersen, Mark Simkin, and Benedikt Wagner. Foundations of data
availability sampling. Cryptology ePrint Archive, Paper 2023/1079, 2023.

[HSW24] Mathias Hall-Andersen, Mark Simkin, and Benedikt Wagner. FRIDA: data avail-
ability sampling from FRI. In Leonid Reyzin and Douglas Stebila, editors, Advances
in Cryptology - CRYPTO 2024 - 44th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part VI, volume 14925
of Lecture Notes in Computer Science, pages 289–324. Springer, 2024.

[KRS25] Dmitry Khovratovich, Ron D. Rothblum, and Lev Soukhanov. How to prove false
statements: Practical attacks on fiat-shamir. Cryptology ePrint Archive, Paper
2025/118, 2025.

[Mod24] Modulus Labs. Scaling intelligence: Verifiable decision forest inference with re-
mainder, 03 2024. Unpublished manuscript.

[Sov24] Sovereign Labs. Sovereign SDK: Data availability specification, 2024. Accessed: 29
December 2024.

[Tha22] Justin Thaler. Proofs, Arguments, and Zero-Knowledge. Foundations and Trends®
in Privacy and Security, 4(2–4):117–660, 2022.

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. Libra: Succinct zero-knowledge proofs with optimal prover computa-
tion. Cryptology ePrint Archive, Paper 2019/317, 2019.

[ZCF24] Hadas Zeilberger, Binyi Chen, and Ben Fisch. Basefold: Efficient field-agnostic
polynomial commitment schemes from foldable codes. In Advances in Cryptology
– CRYPTO 2024: 44th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 18–22, 2024, Proceedings, Part X, page 138–169, Berlin,
Heidelberg, 2024. Springer-Verlag.

[ZGK+17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. vSQL: Verifying arbitrary SQL queries over dynamic
outsourced databases. Cryptology ePrint Archive, Paper 2017/1145, 2017.

15

A Proof of ZODA variation

From before, we assume that readers are familiar with the log-randomness variation [DP24b,
AER24] of the Ligero subspace distance check [AHIV17]. We will also assume some famil-
iarity with the ZODA [EMA24] protocol. Though not strictly necessary, the proofs here are
very similar in spirit to the proofs given in [EMA24, App. E] with only small changes, but
we put them here in full for completeness.

A.1 (Short) preliminaries

We fix some basic notation and implications thereof in what follows. For more, see, e.g., [EA23,
AER24] which we reference in what follows.

Probabilistic implications. We use the probabilistic implication framework of [EA23]
to significantly simplify the notation. In particular, we use the following definition and its
consequence. Letting Pr and Qr′ be statements which are either true or false (i.e., Boolean
variables), then we write

Pr =⇒
p

Qr′ ,

whenever Pr(Pr ∧ ¬Qr′) ≤ p, over the randomness r, r′ drawn from a provided distribution,
which will always be stated in the text. We call p the error probability, which means that the
statement above may be read as: if Pr is true, then Qr′ must also be true, except with (error)
probability no larger than p. (‘Standard’ logical implications are exactly those for which the
probability of error is 0.) This notation serves to clean up proofs since it is very similar
to the ‘standard’ logical rules. For example, much like logical implications, probabilistic
implications may also be chained, with some additional error.

Pr =⇒
p

Qr′ , and Qr′ =⇒
p′

Tr′′ ,

over randomness r, r′ and r′, r′′, then

Pr =⇒
p+p′

Tr′′ .

(This follows essentially from a union bound argument.) Similarly, if we have the determin-
istic statements Q(1), Q(2) and the following probabilistic implications are true

P (1)
r =⇒

p
Q(1) and P (2)

r =⇒
p

Q(2), (7)

then
P (1)
r ∧ P (2)

r =⇒
p

Q(1) ∧Q(2).

We use both observations in the statements and proofs below.

16

Subspace distance check. The main checks performed in the sampling protocol depend
on the subspace distance check for logarithmic randomness, originally derived in [DP24b] as
an extension of the Ligero subspace distance check [AHIV17], though we use the notation
and improvement of [AER24]. As in §2, define

ḡr = (1− r1, r1)⊗ · · · ⊗ (1− rk, rk),

where r1, . . . , rk ∈ F uniformly drawn from F and ḡr ∈ F2k . As before, we have some code
G ∈ Fm×n with distance d > 0. The subspace distance check states that, for a given matrix
X ∈ Fm×2k and some distance q < d/3 the following probabilistic implication holds:

∥Xḡr −Gyr∥ < q =⇒
p

there exists X̃ ∈ Fn×2k such that ∥Xḡr −GX̃∥ < q, (8)

where yr can depend on the randomness r and the probability of error p satisfies

p ≤ kq

|F|
, (9)

over the uniform randomness r ∈ Fk. (It is very important to note that the matrix X̃ is
independent of the randomness r.) In other words, if we take a linear combination of the
columns of X via the structured random vector ḡr and then check that the result is q-close
to some codeword Gyr, then it must be true that the original matrix X must be q-close to
some (fixed) correctly-encoded matrix X̃, except with probability no more than p. We will
use this check many times in what follows.

A.2 Sampler properties

We will show that, if the checks of the sampler algorithm (§2.3) succeed, then it must have
been the case that the (opaque) matrix Y , corresponding to the rows of Z when the encoder
is honest, must be close to the tensor encoding of some matrix X̃. Similarly it must have
been true that the (opaque) matrix W , corresponding to the columns of Z when the encoder
is honest, must be close to the transpose of the tensor encoding of the same matrix X̃. Along
the way, we will show the matrix-vector product property and the correct encoding property
hold, since these will be useful in establishing the unique decoding property. With that in
mind, along with the subspace distance check, the proof is as follows.

Matrix-vector product. First, note that step 6 simply checks that two m-vectors match
at |S| uniformly randomly picked indices. In other words, if the vectors differ in at least q
entries, the probability step 6 succeeds is no more than(

1− q

m

)|S|
.

Writing this out in probabilistic implications, this is simply saying that, for every r ∈ Fk,
the following is true:

ȲS ḡr = GSyr =⇒
p′

∥ȲS −Gyr∥ < q, (10)

17

where the randomness is over the chosen indices S ⊆ {1, . . . ,m}. The error probability p′

satisfies the following bound:

p′ ≤
(
1− q

m

)|S|
. (11)

The conclusion of (10) is the proposition of the subspace distance check (8), which means
that, by chaining probabilistic implications, we know

ỸS ḡr = GSyr =⇒
p+p′

there exists some matrix Ỹ such that ∥Ȳ −GỸ ∥ < q. (12)

From before, the randomness is over uniformly random S ⊆ {1, . . . ,m} and independent,
uniformly sampled r ∈ Fk. By the triangle inequality and the definition of the ‘norm’ ∥ · ∥,

∥G(Ȳ ḡr − yr)∥ ≤ ∥(Y −GȲ)ḡr∥+ ∥Y ḡr −Gyr∥ ≤ ∥Y −GȲ ∥+ ∥Y ḡr −Gyr∥ < 2q ≤ d.

Since the distance of G is (at least) d, then we have that

Ỹ ḡr = yr, (13)

with error probability no more than p+ p′, from (12). (This is essentially the matrix-vector
product property, except we still need to show that this Ỹ is consistent with the matrix
derived from W . We do so later this section.)

Correct encoding property. This, in turn, implies that

GSỸ ḡr = GSyr = ȲS ḡr,

where the second equality is the antecedent of (10). Finally, it is not hard to show that for
any given vector x ∈ F2k , we have that

ḡTr x = 0 =⇒
p′′

x = 0, (14)

where p′′ ≤ k/|F|. (This can be slightly improved, see [EA23, §3.1.3], but we do not do so
here.) Applying this probabilistic implication and using the conjunction property (7), we
have that

GSỸ ḡr = ȲS ḡr =⇒
p′′

GSỸ = ȲS,

over the randomness r ∈ Fk, sampled uniformly randomly.

Unique encoding for a single matrix. Finally, note that, by the check of step 5, we
know

YS = ȲSG
′T = GSỸ G′T .

This, in turn, implies
∥Y −GỸ G′T∥ < q,

18

as required. (Note that by the conjunction (7), we incur no additional error.) In English,
we have shown that, by checking steps 5 and 7, the sampler may conclude that there exists
some matrix Ỹ such that

∥Y −GỸ G′T∥ < q,

except with error probability no larger than p+ p′ + p′′. A nearly identical proof shows the
same is true over W T after checks 5 and 7, which gives

∥W T −G′W̃GT∥ < q,

with the same error probability p + p′ + p′′ (assuming |S ′| = |S|, the extension here being
obvious). From before, the conjunction property (7) means that we do not incur additional
error in concluding that both

∥Y −GỸ G′T∥ < q and ∥W T −G′W̃GT∥ < q,

i.e., the error is no larger than p+ p′ + p′′.

Consistency of unique encodings. Finally, the check in step 9 means that

ḡ′Tr′ yr = wT
r′ ḡr.

Combining this with (13), we have that

ḡ′Tr′ (Ỹ ḡr) = (W̃ ḡ′r′)
T ḡr.

Or, after rewriting:
ḡ′Tr′ (Ỹ − W̃ T)ḡr = 0.

Finally, applying the check (14) twice, we get

ḡ′Tr′ (Ỹ − W̃ T)ḡr = 0 =⇒
2p′′

Ỹ = W̃ T .

Chaining all implications together implies that, after the sampling algorithm is run, the
sampler knows, by setting X̃ = Ỹ = W̃ T , that there exists some matrix X̃ such that

∥Y −GX̃G′T∥ < q and ∥W T −G′X̃TGT∥ < q,

except with probability no more than p+p′+3p′′, over the randomness r, r′ ∈ F2k . Plugging
in the inequalities for p in (9), p′ in (11), and p′′ defined after (14), we get

p+ p′ + 3p′′ ≤ k(q + 3)

|F|
+
(
1− q

m

)|S|
,

assuming |S| = |S ′| and q = q′, which is what is given in (3) after setting q = d/3.

19

