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Abstract

We present a general decentralized formulation for a large class of collision avoidance
methods and show that all collision avoidance methods of this form are guaranteed to
be collision free. This class includes several existing algorithms in the literature as
special cases. We then present a particular instance of this collision avoidance method,
CARP (Collision Avoidance by Reciprocal Projections), that is effective even when
the estimates of other agents’ positions and velocities are noisy. The method’s main
computational step involves the solution of a small convex optimization problem, which
can be quickly solved in practice, even on embedded platforms, making it practical to
use on computationally-constrained robots such as quadrotors. This method can be
extended to find smooth polynomial trajectories for higher dynamic systems such at
quadrotors. We demonstrate this algorithm’s performance in simulations and on a
team of physical quadrotors. Our method finds optimal projections in a median time
of 17.12ms for 285 instances of 100 randomly generated obstacles, and produces safe
polynomial trajectories at over 60hz on-board quadrotors. Our paper is accompanied
by an open source Julia implementation and ROS package.

1 Introduction

Reliable collision avoidance is quickly becoming a mainstay requirement of any scalable
mobile robotics system. As robots continue to be deployed around humans, assurances
of safety become more critical, especially in high traffic areas such as factory floors and
hospital corridors. We define a class of distributed collision avoidance methods, known
as the reciprocally safe methods, which we prove are guaranteed to be collision free by
construction. This class contains a number of well-known, published algorithms, providing
an alternative proof of collision avoidance. We then present a special case of this class
that allows a group of robots to avoid colliding with one another, even when each robot
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Figure 1: Two quadrotors executing a reciprocal collision avoidance maneuverer each agent (red,
blue) maintains an ellipsoidal estimate of the other’s position. The agents move towards their
goal point (square) projecting (triangle) it into their safe-reachable set. The solid curve shows the
trajectory history and the dotted curve shows the path to the projected point.

has its own (potentially noisy) estimates of other robots’ states, as is common with noisy
on-board sensors. The method additionally requires no explicit communication among the
robots, nor does it require these estimates to be consistent with those of other robots. More
specifically, we assume that each robot keeps an uncertainty set (e.g., unions and intersections
of ellipsoids) that contain the possible future locations of other robots.

The resulting policy is distributed in the sense that each robot only requires an estimate of
the relative positions of the other robots. In other words, robots do not need to communicate
their positions to one another to coordinate their actions. Each robot uses its own position
estimates for the other robots to find a safe-reachable set for itself, which is characterized by a
generalized Voronoi cell. Our algorithm then computes a projection onto this safe-reachable
set, which we show reduces to an efficiently solvable convex optimization problem. We then
extend the projection method to find smooth polynomial trajectories, instead of just a single
point, which lie entirely inside the agents’ safe-reachable set. Our method is amenable to fast
convex optimization solvers. Using our method, a quadrotor maneuvering in a 3D space with
100 other quadrotos can compute its control action in approximately 17ms, including setup
and solution time. Because the resulting method is reciprocally safe, we have the immediate
implication that, if each robot uses this policy, mutual collision avoidance is guaranteed.

Summary. This paper is organized as follows. The remainder of this section discusses re-
lated work. The following section defines the class of ‘reciprocally safe methods’, proves that
reciprocal collision avoidance is guaranteed for any method in this class, and then discusses
some basic, but useful, extensions to this proof. The following section presents a particu-
lar instance of a reciprocally safe method, called ‘CARP,’ short for Collision Avoidance by
Reciprocal Projections. This method is specifically constructed to guarantee safety, even in
the presence of noisy sensor data, while also being fast to execute on-board, as the resulting
trajectory can be computed by solving a small convex optimization problem. The following
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section shows some benchmarks of the algorithm on synthetic data, a large team of simulated
robots in both 2D and 3D, and, finally, on a team of quadrotors with noisy on-board data.
We conclude with some thoughts and possible extensions. This paper extends the previous
conference submission [ASS19] by adding a smooth polynomial trajectory generation method
via the reciprocal projection framework as well as hardware demonstrations on a quadrotor
platform. It also simplifies and extends the proof and the constructions given in the original
paper.

1.1 Related work

The most closely related methods for fully distributed collision avoidance in the literature
are the velocity obstacle (VO) methods, which can be used for a variety of collision avoid-
ance strategies. These methods work by extrapolating the next position of an obstacle using
its current position and velocity. One of the most common tools used for mutual collision
avoidance is the Reciprocal Velocity Obstacles (RVO) [VdBLM08, VdBGLM11, VdBGS+16]
method in which each agent solves a linear program to find its next step. The Buffered
Voronoi Cell (BVC) method of [ZWBS17] provides similar avoidance guarantees, but does
not require the ego agent to know other agents’ velocities, which can be difficult to estimate
accurately. The BVC algorithm opts instead for defining a given distance margin to com-
pute safe paths. BVC methods have been coupled with other decentralized path planing
tools [ŞHA19] in order to successfully navigate more cluttered environments, but require
that the other agents’ positions are known exactly.

Uncertainty. While both VO and BVC methods scale very well to many (more than 100)
agents, they also require perfect state information of other agents’ positions (BVC), or posi-
tions and velocities (RVO). In many practical cases, high accuracy state information, espe-
cially velocity, may not be accessible as agents are estimating the position of the same objects
they are trying to avoid. Extensions to VO that account for uncertainty have been studied
under bounded ([CHTM12]) and unbounded ([GSK+17]) localization uncertainties by utiliz-
ing chance constraints. While these have been extended to decentralized methods ([ZA19]),
they assume constant velocity of the obstacles at plan time. Unbounded localization esti-
mates, modeled as Gaussian Mixture Models, were combined with RVO in [AM21a], and
have been used effectively, but these methods only estimate the velocity at plan time and
do not consider how the velocity of the other agents may change over the horizon. Com-
bined Voronoi partitioning and estimation methods have been studied for multi-agent path
planning tasks [BCH14], but still require communication to build an estimate via consensus.
The V-RVO method of [AM21b] is the most similar to our method in that it augments the
safe reachable set by adding RVO style constraints to the BVC as well as deflating the safe-
reachable regions based on higher order dynamics. In contrast to these, our method does
not require any communication or velocity state information, nor does it require the true
position of the other agents. Instead, the algorithm uses only an estimate of the current
position of nearby agents and their reachable set within some time horizon.
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Comparison. Our algorithm takes a desired trajectory or goal point (which can come
from any source, akin to [VdBLM08, ZWBS17]), and returns a safe next step for an agent
to take while accounting for both the uncertainty and the physical extent of other agents.
The focus of this work is on fast, on-board refinement rather than total path planning. More
specifically, while the algorithm presented could be used to reach a far away goal point, it
is likely more useful as a small-to-medium scale planner for reaching waypoints in a larger,
centrally or locally planned trajectory.

Higher order planners. Similarly, single agent path planners such as A* [HNR68] or
rapidly-exploring random trees (RRTs) [LKJ01] can be applied to the multi-agent case, but
solution times grow rapidly due to the exploding size of the joint state space. For ex-
ample, graph-search methods can be partially decoupled [WC11] to better scale for larger
multi-agent systems, but can explore the entire joint state-space in the worst case. Fast
Marching Tree (FMT) methods [JSCP15] are similar to RRTs in that they dynamically
build a graph via sampling. But, while FMT methods have better performance in higher
dimensional systems, they still require the paths to be centrally calculated. A* can also be
used in dense environments for decentralized multi-agent planning when combined with bar-
rier functions [MJWP16], but require the true position of all other agents. While all of these
methods require global knowledge and large searches over a discrete set, they can be used
as waypoint generators that feed into our method—for use in, e.g., cluttered environments.

Nonconvex methods. Optimization methods that use sequential convex programming
(SCP) [SHL+13, ASD12, MCH14] have also been studied for multi-agent path planning;
however, these algorithms are still centralized and may exhibit slow convergence, making
them unreliable for on-line planning. For some systems, these methods can be partially
decoupled [CCH15], reducing computation time at the cost of potentially returning infeasible
paths. Our method, in comparison, is fully decentralized and produces an efficient convex
program for each agent. The solution of this program is a safe waypoint for the agent, which,
unlike SCP methods, requires no further refinement.

2 Reciprocally safe methods

In this section we define a class of methods, called the reciprocally safe methods, and show
that any method in this class is guaranteed to be collision-free, assuming the agents start
out in a collision-free configuration. We will then show that this proof contains a number of
results in the literature as special cases, and give some simple extensions, such as ensuring
a minimum separation.

2.1 Method description

We start with n agents in an unbounded Euclidean space. For each agent i = 1, . . . , n, let
xi(t) ∈ Rd denote its position, where d is the dimension of the space, at time t = 1, . . . , T .
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At each time step t, each agent i will have an estimate of possible future positions of every
other agent j, given by some set E i

j(t) ⊆ Rd, with i, j = 1, . . . , n, and j ∕= i. (Note that this
set need not be bounded, nor closed for the proof.) We will assume that E i

j(t) is consistent ;
i.e., that agent j’s position at time t+ 1 is always within the uncertainty set of agent i:

xj(t+ 1) ∈ E i
j(t),

for every agent i, j = 1, . . . , n with i ∕= j and every given time t = 1, . . . , T − 1.

Reciprocally safe set. A set Pi(t) ⊆ Rd for agent i, at time t, is reciprocally safe if, for
every other agent j with j ∕= i, we have that

Pi(t) ∩ E i
j(t) = ∅. (1)

One way of interpreting Pi(t) is as a set of positions which are known to be safe to move to,
given the position estimates of every other agent. As before, we do not require this set be
bounded or even closed.

We will then say that the n agents implement a reciprocally safe method if there exists
reciprocally safe sets Pi(t) ⊆ Rd such that

xi(t+ 1) ∈ Pi(t),

if Pi(t) is nonempty, and xi(t+1) = xi(t), otherwise, for each i = 1, . . . , n and t = 1, . . . , T−1.
Written out, we say that agents implement a reciprocally safe method whenever they move to
a reciprocally safe position whenever such a position is available, and do not move otherwise.
We will now show that any reciprocally safe method is collision-free, assuming the agents
start from a collision-free configuration.

Proof. The proof is almost by definition. Consider any two distinct agents i, j = 1, . . . , n
with i ∕= j at some time t = 1, . . . , T . We will show that xi(t+ 1) and xj(t+ 1) always have
positive distance from each other, assuming that xi(t) and xj(t) are some positive distance
apart. First, if Pi(t) is nonempty, then, by definition, we have

xi(t+ 1) ∈ Pi(t),

but since the set Pi(t) has empty intersection with the uncertainty set, by assumption,

Pi(t) ∩ E i
j(t) = ∅,

then,
xi(t+ 1) ∕∈ E i

j(t),

and, finally, since the uncertainty set contains the true position of agent j at time t+ 1,

xj(t+ 1) ∈ E i
j(t),
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so xi(t+ 1) and xj(t+ 1) must have positive separation.
On the other hand, if Pi(t) is empty, and Pj(t) is nonempty, the proof follows similarly

by replacing i with j. Finally, if both Pi(t) and Pj(t) are empty, then

xi(t+ 1) = xi(t), and xj(t+ 1) = xj(t),

so xi(t+1) and xj(t+1) have positive separation because xi(t) and xj(t) did, by assumption.
Because this is the case for any i ∕= j and every t = 1, . . . , T − 1, any reciprocally safe

method is collision free as any two agents always have positive separation, assuming they
have positive separation at t = 1.

2.2 Basic extensions

We outline some immediate extensions to the proof above.

Positive margin. In the previous proof, while there is a guarantee that the agents will
be positively separated, the separation could be arbitrarily small. On the other hand, we
can imagine that the agents are all required to have some amount of margin that is bounded
from below. We will denote the required margin by some set B ⊆ Rd, which we view as a
“safe” region around the agent. Usually B will be a ball in d dimensions:

B = {y | ‖y‖2 ≤ ε},

where ε > 0 is the desired minimal distance from all other agents, but we may generally take
any set B we wish.

To guarantee this, we can strengthen condition (1) to

(Pi(t) +B) ∩ E i
j(t) = ∅,

whenever the set Pi(t) is nonempty. Here, we define

Pi(t) +B = {y + z | y ∈ Pi(t), z ∈ B},

as the set sum, or Minkowski sum, of Pi(t) and B. Another way of stating this is, if the set
Pi(t) is nonempty, it must only contain points which have a margin of at least B from the
future estimated positions. The resulting proof is similar to the base method and gives the
stronger guarantee that

xj(t+ 1) ∕∈ xi(t+ 1) +B,

for any two agents i ∕= j. In the special case that B is an ε-ball, this would imply that agents
i and j are at least ε distance apart.
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Stopping set. The proof above requires the condition that xi(t+1) = xi(t) if the set Pi(t)
is empty. This is, of course, not always possible for realistic agents such as drones, which
cannot stop immediately. In this case, we can relax the condition xi(t + 1) = xi(t) to the
following condition:

xi(t+ 1) ∈ xi(t) + Si = {xi(t) + y | y ∈ Si},

where Si ⊆ Rd is agent i’s stopping set (similar to the braking set used in [AM21b]) which
is assumed to be compact. We then strengthen the initial condition that xi(t) and xj(t) are
positively separated for i ∕= j, to

(xi(t) + Si) ∩ (xj(t) + Sj) = ∅,

and the reciprocal safety condition that Pi(t) must satisfy when it is nonempty, to

(Pi(t) + Si) ∩ E i
j(t) = ∅,

for each i, j = 1, . . . , n with i ∕= j. Positive separation between xi(t + 1) ∈ xi(t) + Si and
xj(t+1) ∈ xj(t)+Sj is then always guaranteed in this case by a similar proof, since disjoint
compact sets have positive separation. Note that this only guarantees one-step separation,
from time t to time t+1. We can then guarantee positive separation at all times by requiring
the additional condition that, if Pi(t) and Pi(t+ 1) are both empty, we have

xi(t+ 2) = xi(t+ 1),

i.e., agent i only needs to ‘stop once.’

2.3 Example methods

There are several simple methods which satisfy the reciprocal safety property, and are there-
fore guaranteed to be collision free. We describe some basic examples in this section, which
include some methods in the literature that are known to be collision free by other proof
techniques, showing that this class is general enough to include a number of known results.

Trivial method. Perhaps the simplest of all possible reciprocally safe methods is the
trivial method, which, for all agents i = 1, . . . , n, defines Pi(t) as

Pi(t) = ∅, t = 1, . . . , T − 1,

and sets the position estimates to be all of Rd for any distinct agents i, j = 1, . . . , n with
i ∕= j,

E i
j(t) = Rd, t = 1, . . . , T − 1.

In other words, the agents’ position estimates of each other are ‘maximally bad,’ i.e., they
include all of Rd, and there is no safe position to move to, as Pi(t) = ∅ for each agent i
and time t. It is follows that the sets Pi(t) satisfy the reciprocal safety conditions (1), and

7



that the agents must always have xi(t + 1) = xi(t). Because of this, the agents never move
from their starting locations, which is easily seen to be collision free, when starting from a
collision free configuration.

While this example is not useful in practice, it is a good initial exercise to check the
conditions necessary for a method to be reciprocally safe.

Buffered Voronoi cell. Another reciprocally safe method is the buffered Voronoi cell
method of [ZWBS17]. In this method, the future position estimate that agent i has of agent
j at time t, is given by

E i
j(t) = {y ∈ Rd | ‖y − xj(t)‖22 + ε ≤ ‖y − xi(t)‖22},

where xj(t) is the (known) position of agent j at time t, xi(t) is the position of agent i, and
ε > 0 denotes some margin. In other words, the possible future positions of agent j are the
set of points which are further from agent i than from j by at least ε. (We take a simpler
approach here than that of [ZWBS17] for the sake of presentation, but the proof is nearly
identical.) In this case, the set of ‘safe’ locations for agent i is defined similarly:

Pi(t) =
!

j ∕=i

{y ∈ Rd | ‖y − xi(t)‖22 + ε ≤ ‖y − xj(t)‖22}.

The reciprocal safety condition can be readily verified, since for distinct agents i and j, and
any point in the uncertainty region y ∈ E i

j(t) satisfies

‖y − xj(t)‖22 + ε ≤ ‖y − xi(t)‖22,

by definition. So, y cannot be in the reciprocally safe set Pi(t), since y ∈ Pi(t) means that
y also satisfies,

‖y − xi(t)‖22 + ε ≤ ‖y − xj(t)‖22 ≤ ‖y − xi(t)‖22 − ε,

a contradiction.
Any method that agent i uses to choose its next location within the set Pi(t) is guaranteed

to be collision free by the above proof. Additionally, because the set Pi(t) is a convex set
as it is the intersection of a number of convex sets, many convex optimization problems can
easily include the constraint that the agent’s future position must lie in this set. Because
convex problems are almost always efficiently solvable, even with on-board computational
constraints, finding feasible points that best satisfy some requirement can often be done in
real time.

Method refinement. Very generally, we have the following additional result: if a method
is reciprocally safe, any refinement of such a method is also always safe. That is, given a
reciprocally safe method, where the agents i ∕= j have estimates E i

j(t) and reciprocally safe
sets Pi(t) at each time t, we say a second method is a refinement of the first if it has estimates
Ē i
j(t) that satisfy Ē i

j(t) ⊆ E i
j(t), and reciprocally safe sets P̄i(t) that satisfy P̄i(t) ⊆ Pi(t). This
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implies that if the original method is reciprocally safe, i.e., satisfies (1), then a refinement is
also reciprocally safe as it also satisfies (1), and is therefore collision free. More intuitively,
this is can be restated as the fact that having better estimates, or a more restricted action
space, can never make an algorithm unsafe. This construction then immediately includes, for
example, the safety results of [AM21b], where the position estimates are the buffered Voronoi
cells given in the previous example, intersected with an additional reciprocal velocity obstacle
(RVO) cone.

3 General method

In this section, we present a reciprocally safe method that generalizes the buffered Voronoi
cells of [ZWBS17] to include measurement uncertainty and higher order dynamics. The
resulting method relies on the solution of a small convex optimization problem at each time
step that is unlikely to have a closed form, but can still be solved with on-board systems in
under a millisecond with modern solvers.

To do this, we first introduce the idea of generalized Voronoi cells—a natural way of
extending Voronoi cells from collections of points to collections of sets. In many cases, the
resulting generalized Voronoi cells cannot be defined in terms of a finite number of closed
form inequalities, but, because these sets are always convex, we can write new expressions
that depend on a larger number of variables that do have closed forms.

3.1 Generalized Voronoi cells

Given a point x ∈ Rd and a collection of m sets S1, . . . , Sm ⊆ Rd, we will define the
generalized Voronoi cell of x with respect to the family S as

V (x, S) = {y ∈ Rd | ‖y − x‖2 ≤ min
j=1,...,m

‖y − Sj‖2}. (2)

Here, we have defined ‖y − Sj‖2 to be the distance-to-set function:

‖y − Sj‖2 = inf
z∈Sj

‖y − z‖2,

for j = 1, . . . ,m. (If Sj is empty, we set the distance as +∞, for convenience.) We can view
the points in V (x, S) as the set of points which are closer to x than to any point in any one
of the sets Sj. Note that we can write

V (x, S) =
m!

j=1

V (x, {Sj}).

We will make use of this fact later in what follows.
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Comparison to Voronoi cells. The usual definition of the Voronoi cell is, given a family
of points x1, . . . , xm ∈ Rd, the cell generated for the ith point is defined as the set of all
points closer to xi than to any other point xj; i.e.,

{y ∈ Rd | ‖y − xi‖2 ≤ min
j=1,...,m

‖y − xj‖2}.

This is the special case of (2) where we take the generalized Voronoi cell of xi with respect
to S, and every set in the family S is a singleton; i.e., Sj = {xj} for each j = 1, . . . ,m.

Convexity. Like the usual definition of a Voronoi cell, the generalized Voronoi cell of x
with respect to S is convex, even when the sets Sj are not. To see this, note that we can
write V as

V (x, S) =
m!

j=1

!

z∈Sj

{y ∈ Rd | ‖y − x‖2 ≤ ‖y − z‖2},

which is the intersection of a family of hyperplanes. (This follows by squaring both sides
of the inequality and cancelling the ‖y‖22 term.) Because the intersection of convex sets is
convex, and hyperplanes are convex sets, then V (x, S) is always convex.

3.2 Projective method

We will now discuss a simple version of the method and its applications to single-integrator
dynamics. Later in this section, we will also show how to extend this to more general
dynamics and more general sets.

Projection. A common objective for an agent to optimize is its distance to some desired
goal. We will call this goal point xg

i ∈ Rd, for agent i. At every time step t, the optimization
problem for agent i is then:

minimize ‖y − xg
i ‖2

subject to y ∈ Pi(t).

The optimization variable here is y ∈ Rd, while the problem data are the goal point xg
i ∈ Rd

and the reciprocally safe set Pi(t). If a solution to the problem y! exists, the agent takes
a step towards y!, otherwise, if there are no feasible points, then the agent stops in place.
(We will see extensions to the more general case where the agent has some stopping distance
later in this section.)

Such a method is often called a “greedy” method, as the agent attempts to get as close as
possible as it can to the goal position, while remaining safe. We refer to this specific way of
picking the next possible point as a ‘projective method’ since a solution y! is often called the
projection of xg

i onto the set Pi(t). We will show how to construct reciprocally safe sets Pi(t)
for all agents i = 1, . . . , n, assuming that each agent has some (potentially noisy) estimate
of the future locations of all other agents.
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Safe estimates. To simplify notation, we will write the algorithm for a single agent i at a
given time step t. Because of this, we write x for xi(t), which is the agent’s current position
at time t, and Ej for E i

j(t), which are the estimates agent i has of agent j at the next time
step, t+ 1.

Using this notation, we can view the set V (x, E) (i.e., the set of points which are closer
to x than they are to any Ej) as a set of positions which agent i is guaranteed to reach before
any agent j. More specifically:

V (x, E) ∩ Ej = ∅, (3)

for each j ∕= i. We also note that this set is an overly-conservative set as there are many sets
that also satisfy (3) that strictly contain V (x, E).

A natural choice for a reciprocally safe set for agent i, is then

Pi(t) = V (x, E),

since we know that any choice of y ∈ Pi(t) is guaranteed to be safe, by construction. This
implies that, if all agents i choose points within Pi(t) (and simply stop if the set is empty)
then the method is guaranteed to be collision free. The resulting optimization problem is:

minimize ‖y − xg
i ‖2

subject to y ∈ V (x, E),
(4)

with variable y ∈ Rd. Note that, since Pi(t) is a generalized Voronoi cell, then Pi(t) is
convex. We will use this fact to give an efficient method for optimizing a goal function, when
the sets Ej are the intersections and unions of well-known convex sets.

3.3 Projecting onto generalized Voronoi cells

We will show how to efficiently solve (4) by first reducing it to a problem over several
constraints, each of which are simpler than the original. We then show how these constraints
can be reduced to a number of inequalities which are easily compiled down to well-known
conic constraints, when the uncertainty sets Ej are unions and intersections of ellipsoids and
polygons. Similarly to the previous subsection, we will only consider agent i’s position at
time t, denoted simply as x and the uncertain estimates of the future positions of the other
agents as Ej for j = 1, . . . , n with j ∕= i.

A basic reduction. We first note that, given a problem of the form of (4), we can write
the equivalent problem:

minimize ‖y − xg
i ‖2

subject to y ∈ V (x, {Ej}), j ∕= i.

In other words, we have ‘split’ the single constraint y ∈ V (x, E) to n constraints given by
y ∈ V (x, {Ej}) for each j. This follows from the fact that

V (x, E) =
!

j ∕=i

V (x, {Ej}),
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which is readily verified from (2). From this, it suffices to show how to write the constraint y ∈
V (x, {Ej}) for a single set Ej. We will write E1 for the set in question, with the understanding
that E1 stands for any ‘anonymous’ set.

Convex sets. In general, the set E1 is defined by

E1 = {z ∈ Rd | f(z) ≤ 0}, (5)

where f : Rd → Rr is a convex function. For example, in the case that E1 is an ellipse
defined by (µ,Σ) where µ ∈ Rd and Σ ∈ Sd

++ is positive definite, we have that

f(z) =
1

2
zTΣ−1z + µT z − 1.

On the other hand, if E1 is a polyhedron, it is defined by a number of affine inequalities; i.e.,

f(z) = Az − b,

where A ∈ Rr×d and b ∈ Rr. There are a number of other possible functions, such as
indicator sets among many others, but we focus on these two cases as the most common
types of sets.

Constraint rewriting. Given any set E1 defined by a function f , as in (5), the corre-
sponding constraint is:

y ∈ V (x, {E1}).

From (2), this is true, if, and only if, y also satisfies

‖y − x‖22 ≤ inf
z∈E1

‖y − z‖22.

We will rewrite this as

‖x‖22 − 2yTx ≤ inf
f(z)≤0

"
‖z‖22 − 2yT z

#
, (6)

by expanding the squared norm on both sides, cancelling like terms, and using the definition
of E1. In general, it is unlikely that there is a closed form solution for the right hand side
of the inequality, even in the special cases where E1 is an ellipse or a polyhedral set. To get
around this, we will use a duality trick, introduced originally in [ASS19], to rewrite the right
hand side as an unconstrained infimum. This new infimum has a simple analytical solution
in the important cases where f is an affine function (when E1 is a polyhedron) and when f
is a convex quadratic (when E1 is an ellipsoid). There are likely more applications of this
method to more complicated functions f , but we focus on these two important cases. We
encourage readers to apply this method to other functions f which may be useful in practice.
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Weak duality. One simple approach to finding a reasonable replacement for (6) is to find
an approximation of the right hand side that is concave and reasonably tight. One standard
approach is by Lagrange duality [BV04], where the ‘hard constraint’ f(z) ≤ 0 is relaxed to
a linear penalty term with some weights λ ∈ Rn

+, i.e., inequality (6) is replaced with

‖x‖22 − 2yTx ≤ inf
z

"
‖z‖22 − 2yT z + λTf(z)

#
. (7)

This new infimum is unconstrained and sometimes, but not always, admits closed form
solutions when the original does not. (In many cases, the closed form solutions, when they
exist, are well-known.) For convenience, we will define the dual function g as

g(y,λ) = inf
z

"
‖z‖22 − 2yT z + λTf(z)

#
,

and note that, for any λ ≥ 0 and y we have that

g(y,λ) ≤ inf
f(z)≤0

"
‖z‖22 − 2yT z

#
, (8)

which is known as weak duality [BV04]. Replacing inequality (6) with inequality (7) is often
called a restriction: if y is feasible for some λ ≥ 0 in (7) then y is also feasible for (6). In
other words, the new constraint is at least as tight as the original. An important fact of the
dual function g is that it is concave in its arguments, because g(y,λ) is an infimum over a
family of functions that are affine in y and λ. This implies that (7) is a convex inequality
constraint.

Strong duality. Due to strong duality, the new constraint is, in fact, equivalent to the
original. That is, for every y, there exists some λ ≥ 0 such that inequality (8) holds at
equality:

g(y,λ) = inf
f(z)≤0

"
‖z‖22 − 2yT z

#
.

Because of this, if y is feasible for (6) then there exists some λ such that y is also feasible
for (7), and vice versa. In other words, replacing inequality (6) with (7) and solving this
new problem (with λ ≥ 0 as an additional variable) gives two equivalent problems in that
a feasible y for the first corresponds to a feasible pair (y,λ), with the same objective value,
for the second.

Dual functions for known sets. Given that both constraints are equivalent, the last
remaining point is to write down the dual functions for some known sets. We will make use
of the fact that the minimizer of a convex quadratic is

inf
z

"
zTPz + 2qT z

#
= −qTP−1q, (9)

for any positive definite matrix P ∈ Sd
++ and vector q ∈ Rd. This follows from an application

of the first order optimality conditions.
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Polyhedral uncertainty. In the case where E1 is a polyhedron, we have that

f(z) = Az − b

for some A ∈ Rr×d and b ∈ Rr. In this case, the dual function is

g(y,λ) = inf
z

"
‖z‖22 − 2yT z + 2λT (Az − b)

#
,

where we have replaced λ with 2λ for convenience. Using (9) and the fact that ‖z‖22 = zT Iz,
we get:

g(y,λ) = −‖ATλ− y‖22 − 2λT b,

as required.

Ellipsoidal uncertainty. The case where E1 is an ellipsoid with parameters µ ∈ Rd and
Σ ∈ Sd

++ is rather similar. In this case, the function f is a quadratic and the dual function
is

g(y,λ) = inf
z

"
‖z‖22 − 2yT z + λ(zTΣz + 2µT z − 1)

#
.

Replacing, again, λ with 2λ for convenience. Collecting the quadratic, linear, and constant
terms and applying (9), we have:

g(y,λ) = −(λµ− y)T (I + λΣ)−1(λµ− y)− λ.

This function is concave, and its corresponding constraint is easily representable as a semidef-
inite constraint. On the other hand, most embedded solvers, often due to space and time
restrictions, do not support semidefinite constraints. We can turn this into a constraint that
is representable as a small family of second-order cone constraints, which are often more
efficient in practice and can be handled by embedded solvers such as ECOS [DCB13].

Since Σ is positive definite, it has an eigendecomposition given by

Σ = V DV T ,

where D ∈ Rd×d is a diagonal matrix and V ∈ Rd×d is an orthogonal matrix such that
V TV = V V T = I. Using this, we can write:

(I + λΣ)−1 = (V (I + λD)V T )−1 = V (I + λD)−1V T .

This implies that

g(y,λ) = −(V T (λµ− y))T (I + λD)−1(V T (λµ− y))− λ.

Because the matrix I + λD is diagonal, then:

g(y,λ) = −
d$

i=1

(vTi (λµ− y))2

1 + λDii

− λ, (10)

where vi is the ith column of V . This expression is a sum of quadratic-over-linear terms,
which are easily representable as second-order cone constraints [LVBL98] and are supported
in most embedded solvers.
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Unions and intersections of sets. If E1 is the union of a number of ellipsoids or poly-
hedra, then, as before, we can simply split E1 into its individual components and add each
as a constraint. On the other hand, E1 can also be the intersection of ellipsoids and polyhe-
dra; i.e., E1 is the intersection of the polyhedra specified by A ∈ Rr×d and b ∈ Rr (as the
intersection of polyhedra results in another polyhedron) and the ellipsoids given by (µi,Σi)
for i = 1, . . . , s.

The derivation here is again nearly identical to the previous. We will write λ0 ∈ Rr
+ as

the Lagrange multiplier for the polyhedral constraint, while we write λi ≥ 0 for i = 1, . . . , s
for each of the ellipsoidal constraints. The dual function is then:

g(y,λ) = −h

%
ATλ0 +

s$

i=1

λiµi − b, I +
s$

i=1

λiΣi

&
,

where the function h : Rd × Sd
++ → R is the ‘matrix fractional’ function:

h(y,X) = yTX−1y.

Surprisingly, since the Σi are positive semidefinite, the corresponding equality constraint can
also be written as a number of second order cone constraints, though this reduction is slightly
more complicated and we do not present it here. See, e.g., [LVBL98] for more information.

3.4 Safe quadrotor trajectory planning

For higher order dynamical systems such as quadrotors, it is more desirable to plan entire
safe trajectories rather that just finding a single safe point. We can plan smooth polynomial
trajectories for each agent i, such that the entire trajectory is inside each agent’s reciprocally
safe set, Pi(t). After the polynomial trajectory is found, the required control inputs can be
found via differential flatness [MK11]. In order to generate these trajectories and verify that
they are safe, we require two extensions on the original CARP formulation: (1) a way to find
a polynomial that is entirely inside the Pi, and (2) a method of expanding the uncertainty
estimate E i

j to include the stopping set of other quadrotors.

Bézier curves. Instead of the standard polynomial formulation, we use a Bézier curve to
represent the polynomial trajectory. A Kth order 3-dimensional Bézier curve, B(t) ∈ R3, is
defined by a set of K + 1 “control” points ck ∈ Rd, for k = 0, . . . , K. We define the Kth
order Bézier curve as a linear combination of Bernstein polynomials:

B(t) =
K$

k=0

'
K

k

(
(1− t)K−ktkck. (11)

This curve has the property that it always lies in the convex hull of the control points, i.e.,
B(t) ∈ conv{c0, . . . , cK} for every 0 ≤ t ≤ 1. To find a polynomial of this form that is
entirely inside the safe region, we can add additional constraints to (4) to constrain each
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control point to be inside the set Pi. Finally, since the derivatives of a Bézier curve are
linear combinations of the control points, we can account for the initial and desired final
dynamic state (consisting of the position, velocity, and acceleration) by adding additional
linear constraints to problem (4).

Stopping margins. To include the stopping margins or each quadrotor, we simply expand
the estimate E i

j , similar to [AM21b], by a sphere with radius r = vmax/2amax, where vmax

and amax are the maximum velocity and acceleration of the quadrotor, respectively. This
provides safe, yet conservative bound, for the stopping distance other agents will have during
the planning horizon. In practice, if a velocity measurement is available then a more accurate
inflation can be found. Since the original ellipsoidal estimate is only contains a point estimate
of the other agents, we can expand the ellipsoid to account any number of arbitrary margins.
Given a set of arbitrary ellipsoids E0, . . . , En, there exists an analytical method [BABD06,
LZW16] that finds the smallest (in the sense of major axes length) external bounding ellipsoid
Ē for the Minkowski sum of all the ellipsoids Ē ⊃

)n
i=0 Ei . Thus we can, in a procedural

and consistent manner, combine different margins.

Persistently safe receding horizon controller. We extend problem (4) to account for
additional constraints placed on the Kth order Bézier polynomial. To do this, we formulate
the following optimization problem,

minimize ‖cK − xg‖22
subject to ‖x‖22 − 2cTk x+ g(ck,λk) + λk ≤ 0, k ∈ [K]

x = c0

v0 = K(c1 − c0)

vf = K(cK − cK−1).

(12)

The optimization variables are ck ∈ R3 and λk ≥ 0 for k = 0, . . . , K, while x is the cur-
rent position, and v0 and vf are the current and desired final velocities, respectively. For
compactness, we write [K] = {0, . . . , K}, and g to be defined as in (10). As written, this
finds a 1 second long trajectory, but the section time for the trajectory can be changed by
appropriately scaling the t variable in (11). Initial and final accelerations can also be added
to (12). Since this method is a refinement of (4) (as any solution to (12) is feasible for (4)
with y = cK) then this method is guaranteed to be reciprocally safe. In the case where the
optimization is infeasible, the agent can fall back to the previously calculated safe trajectory.
Figure 2 shows an example instance of a polynomial trajectory being generated inside the
safe-reachable area.
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Figure 2: Polynomial trajectory (blue, dotted) generated for an agent (blue circle) with non zero
initial velocity (blue arrow) to avoid the ellipsoidal estimate of the obstacle (red ellipsoid) expanded
by a margin (blue ellipsoid). The agent goal position (blue square) and the Bézier control points
(black stars) are also shown.

4 Results

4.1 Projection Implementation

To get an accurate estimate of the speed of the projection algorithm, the optimization prob-
lem outlined in (4) was implemented1 in the Julia language [BEKS17] using the JuMP math-
ematical programming language [DHL17] and solved using ECOS [DCB13]. We generated
285 instances of the problem, each with 100 randomly generated ellipsoids in R3. Timing
and performance results for generating and solving the corresponding convex program can
be found in table 1. Figure 3 shows how the performance scales as the number of other
agents increases. All times reported are on a 2.9GHz 2015 dual-core MacBook Pro.

Time Total (GC %)
Minimum 13.20ms (00.00%)
Median 17.12ms (00.00%)
Mean 17.55ms (08.80%)
Maximum 36.77ms (10.59%)

Table 1: Timings with garbage collection (GC) as a percentage of time spent building and solving
problems with 100 randomly generated 3D ellipsoids. Statistics are based on 285 instances and
were obtained from the BenchmarkTools.jl [CR16] package.

1https://github.com/angeris/CARP.jl
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Figure 3: Graph showing total time for generating and solving optimization problem (4) as a
function of the number of ellipsoids in the problem, when solved using the ECOS solver. Note the
logarithmic scales on both axes.

4.2 Trajectory Simulations

The projection algorithm was implemented in both 2D and 3D with a varying number
of agents. In this set up, each agent knows their own position exactly and maintains a
noisy estimate of other agents’ positions, with uncertainties represented as ellipsoids. This
estimate is updated by a set-membership based filter [BR71, LZW16, SS19], a variant of
the Kalman filter. We expand the uncertainty ellipsoid by a given margin to account for
the robot’s physical size. If this margin is also ellipsoidal, then a small ellipsoid which
contains the Minkowski sum of the uncertainty ellipsoid and the margin can be found in
closed form [LZW16, SS19]. This new bounding ellipsoid is used in the projection algorithm
to account for a user defined margin, along with the uncertainty ellipsoid containing the
noisy sensor information.

Figure 4 shows the minimum inter-agent distances for each agent in the simulation sce-
nario mentioned above. The collision threshold was set to .4m, twice the radius of the agents.
Although our method results in longer paths, it remains collision free, while RVO’s paths
result in collision.

Figure 5 shows six instances of a 3D simulation with 10 agents using the polynomial
method. The agents start at the sides of a 10m × 10m × 10m cube and are constrained
to a maximum speed of 6m/s and a maximum measurement error set to 1.0m.The agents,
displayed as quadrotors, each have a bounding box of 0.45m × 0.45m × 0.2m and an addi-
tional ellipsoidal margin with an axis length of .3m in the xand y dimensions, and .7m in
the z dimension. This margin effectively gives a buffer of 0.75m in the xy plane and a large
buffer of .9m in z. We assume non-spherical margins in this simulation since, in the case of
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Figure 4: Inter-agent distances RVO (top) and our method (bottom). The RVO simulation results
in inter-agent distances below the collision threshold (black line).
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quadrotor flight, large margins in the z direction can prevent unwanted effects due to down-
wash ([PHAS17]). The minimum inter-agent distance during the simulation, as measured
from the centers of the agents, was 1.6m.

4.3 Hardware Demonstrations

Figure 6: Quadrotor equipped with a PX racer and UP Board companion computer.

We implemented2 our collision avoidance the method on a set of 2 PX4 based quadrotor
platforms (figure 1) to demonstate our method on a real robotic system3. Each quad (see
figure 6) is outfitted with a x86 based UP board and is tracked via a motion capture system.
Each agent is sent its own position and maintains a noisy ellipsoidal estimate other agents’
positions, which are filtered by a set-membership filter [BR71, LZW16, SS19] and updated
via noise-corrupted measurements. Planning and closed loop trajectory control, as well as
estimation and filtering, are all done on-board. The planner is updated at 80hz, while the
filter is run at 100hz. Low-level control is done with a feed-forward PID velocity controller.
We implemented both the direct goal projection method as well as the polynomial trajectory
generation method. The quadrotors measure 23cm by 23cm by 2.3cm and are given an
additional 30cm margin in the xy plane and a 60cm margin in the z axis. Figures 7 and 8
show the distance between agents over the course of the flight, as well as the final trajectory
and the intermediate trajectories for the projection method (figure 7) and the polynomial
method (figure 8).

2https://github.com/StanfordMSL/carp_ros
3A video of the simulations and experiments can be found at https://youtu.be/oz-bMovG4ow.

20

https://github.com/StanfordMSL/carp_ros
https://youtu.be/oz-bMovG4ow
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t = 120 t = 180

t = 210 t = 250

Figure 5: Six time instances of a 3D simulation of 10 agents. Each agent adds
an ellipsoidal margin (shown) elongated in the z-axis to account for downwash
affects.
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5 Closing Remarks

In this work, we presented a scalable system that can work with simple or complex, dis-
tributed or centralized high-level planners to provide safe trajectories for a team of agents.
Under the assumptions stated, we showed that collision avoidance is guaranteed provided
each agent follows this method. However, we observe practical collision avoidance behavior
even if only the ego agent follows this method. Computational performance results and
simulations provide evidence that this algorithm can potentially be used in safety-critical
applications for mobile robots with simple dynamics. Our open source library can also be
used directly as a ROS package.

Acknowledgments. This work was supported in part by the Ford-Stanford Alliance
program, and by DARPA YFA award D18AP00064. Guillermo Angeris is supported by the
National Science Foundation Graduate Research Fellowship under Grant No. DGE-1656518.
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Figure 7: Projection only method: Inter-agent distance (top) and trajectory locus (bottom)
for two quadrotors. The minimum distance between agents is 1.78m. The locus plot show the
reprojected point (triangle) and goal point (square) over the course of the flight.
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Figure 8: Bézier polynomial method: Inter-agent distance (top) and trajectory locus (bottom)
for two quadrotors. The minimum distance between agents is 2.29m. The locus plot show the
trajectory (dotted) and control points (star) as well as the final goal point (square) over the course
of the flight.
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