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Abstract

Constant function market makers (CFMMs) such as Uniswap, Balancer, and Curve,
among many others, make up some of the largest decentralized exchanges on smart
contract platforms like Ethereum. As the amount of capital deposited in these protocols
has grown, improving capital efficiency for liquidity providers (LPs) has become an
increasingly important challenge. One way to improve efficiency is to allow LPs to
borrow Ether or USD against their shares in a CFMM protocol. In this note, we
investigate the security and capital efficiency of allowing such lending. We provide
sufficient conditions for LP borrowing to be at least as secure and capital efficient
as direct borrowing in Aave/Compound. Furthermore, we show that the exposure
taken by CFMM lenders can be replicated via barrier options, allowing for risks to
be hedged. Finally, we show that the payoff of borrowed CFMM LP shares replicates
bounded convex payoffs. Combined, these results suggest that CFMM lending is a safe
mechanism for improving capital efficiency.

1 Introduction

Constant Function Market Makers (CFMMs) have grown to tens of billions of dollars of
available liquidity and billions of dollars of daily trading volume. These systems are used to
facilitate the decentralized exchange of cryptoassets, allowing for capital providers search-
ing for yield to be automatically matched with traders looking to swap. Capital providers,
commonly referred to as liquidity providers (LPs), supply assets to a smart contract in or-
der to earn yield. On every transaction with a CFMM, trading fees accrue to compensate
liquidity providers for allowing their capital to be used in executing a swap. In some sit-
uations, these fees do not cover the losses that liquidity providers engender due to large
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price movements. This opportunity cost, colloquially known as impermanent loss, repre-
sents the fact that LPs effectively hold shares in a derivative asset with concave (“negative
gamma”) exposure [AC20,AEC20]. One mechanism to improve capital efficiency for LPs is
to provide lending mechanisms for LPs to achieve partial liquidity on their positions. Unlike
in conventional finance, such lending mechanisms are inherently composable with CFMMs
thanks to the open and common interfaces in decentralized finance (DeFi). Composability
is the most important improvement that DeFi provides over traditional lending and trading
and LP share lending is the quintessential example of something difficult to do without a
blockchain.

One of the main hurdles to increasing both usage and liquidity for CFMMs is capital
efficiency. Roughly speaking, capital efficiency refers to the minimum amount of assets
needed to be added to a pool to ensure that trades of a given size never incur more than
a certain amount of transaction cost. An ideal, capital efficient protocol would allow the
CFMM to profitably execute a swap (e.g. buy the asset to be sold and return the traders’
desired asset) while minimizing the amount of capital placed in the pool. Capital efficiency
is controlled (to first-order) by the curvature of the CFMM trading function [AEC20, §2]. In
practice, adjustments to curvature have led to dramatically reduced fees — whereas Uniswap
charges 0.3% per swap Curve is able to charge 0.04% per swap due to lower curvature
and support only for mean-reverting assets. The latest versions of Balancer [Mar21b] and
Uniswap [AZS+21] implicitly allow LPs to adjust the curvature of their individual position,
thus improving an individual LP’s capital efficiency.

Another mechanism for improving capital efficiency is to lend out either the assets con-
tained in the pool or the LP shares themselves. Sushiswap’s Kashi [Ayo21] and Balancer and
Aave’s asset manager [Mar21a] earn yield on assets in LP shares when they are not needed.
This is similar, in spirit, to how exchange-tradeable funds (ETFs) often lend out a portion
of their assets to short sellers in order to earn additional yield [Boy20,BW16]. On the other
hand, lenders such as Aave [FCCM21], Alpha Homora [Pit], and MakerDAO [JMW+20] al-
low for LP share holders to directly borrow assets such as stablecoins (Dai, USDC, USDT)
and Ethereum. In these loans, LP shares are used as collateral in an over-collateralized
loan that is liquidated if the value of the LP share is ever less than the value of the asset
borrowed. Most users of these loans usually aim to earn positive yield on their borrowed
assets, improving the borrower’s expected returns. Both of these solutions improve capital
efficiency because they allow for capital unused in processing swaps to earn addition yield
(in addition to CFMM fees).

How should one assess whether a lending platform is providing improved capital effi-
ciency? Recall that an LP share represents fractional ownership in a portfolio of several
assets. Each trade against the portfolio rebalances the portfolio and changes its value. This
rebalancing can be viewed as a control mechanism for keeping a portfolio at approximately
constant mixture via a game between traders, arbitrageurs, and liquidity providers (e.g. LP
share holders) [EAC21]. In the process, LPs can realize losses indirectly due to concavity
of their payoff function. For instance, if an LP believes that trading will be mean-reverting
(which leads to high LP profits and lower arbitrageur profits [AEC20]), they can borrow
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against their LP shares and then mint new LP shares to earn a higher share of fees.
Before interacting with an LP share lending platform, the user first creates LP shares

by depositing the requisite assets to a CFMM contract. The user then places their LP
shares in the lending protocol and can borrow units of the numéraire asset, upt to some
collateralization threshold. Suppose that ct ∈ Rn is the price vector of each asset in terms
of the numéraire (first asset) at time t > 0. If the value of the collateral ever falls below the
minimum collateralization threshold, the lender is liquidated, incurring a penalty. Unlike a
loan of a single asset for another, the choice of numéraire and more generally, the portfolio
value function, can lead to drastically different liquidation conditions. This means that risk
parameters such as collateralization requirements need to be adjusted not only with regards
to the volatility of the assets in the portfolio, but with regards to the volatility of the entire
portfolio. Computing the net volatility of the portfolio relative to the components can lead
to results that appeal to Simpson’s Paradox. For instance, suppose that the volatility of
asset A is 25% annualized and that of asset B is 50% annualized. Borrowing asset B against
asset A collateral will require less collateral (measured in numéraire terms) than borrowing
asset A against assert B (in numéraire terms). We should expect, in an averaged sense, that
the collateral requirements for the more risky borrowing scenario to be two times the other
scenario. However, it is possible that borrowing asset A or asset B against an LP share
consisting of assets A and B will require more collateral than a borrow against asset B or
asset A (respectively). This is because if assets A and B are highly correlated, then the
probability of a liquidation against an LP share is higher than the sum of the probabilities
of liquidation with A or B as collateral.

In this note, we provide the first (to the authors’ best knowledge) formalism of LP share
lending. We first compare collateral requirements between borrowing assets A against asset
B compared to borrowing asset A against an LP share consisting of assets A and B. In
the process, we generalize the notion of a collateral factor and portfolio value such that
traditional cryptoasset borrowing can be viewed as LP share borrowing with a particular
portfolio value function. We demonstrate that the security of LP share lending reduces to
that of traditional on-chain lending [FCCM21,KCCM20, LH19] provided that the loan-to-
value ratio (also known as the collateral factor) dynamically updates with LP share value.
In Appendix A, we expand this result to borrowing arbitrary LP shares against other LP
shares. These results show that LP share lending can, with proper design, be as safe as
traditional asset lending. Moreover, the results provide a quantitative understanding of the
capital efficiency differences between LP share and direct lending. Counterintuitively, we
find that there exist certain scenarios when LP share lending is more capital efficient than
direct lending.

In order to quantify the precise risk involved in lending, we investigate the outstanding
position of the lending protocol itself. Using the machinery of generalized collateral factors,
we show that one can replicate the exposure that the protocol holds via a covered options
portfolio that includes collateral, quanto options, and binary (‘one-touch’) options. Using
this replication, we provide a mechanism for a lending protocol to hedge its risk given a set
of collateral factors. Our replication utilizes Black-Scholes assumptions and put-call sym-
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metry [CEG99,CL09] to construct exact solutions for lender risk. This replicating portfolio
effectively demonstrates that an LP share lender can hedge their portfolio risk by purchasing
portfolio insurance [Car87]. We note that while our results hold in the no-arbitrage, feeless
scenario, emergent phenomena discovered via simulation and during crises, such as cascad-
ing liquidations [KCCM20,FCCM21,KCCM21], are not insured via these hedges. However,
these results provide a basis for constructing hedges and insurance for on-chain lenders to
ensure that CFMM lending is always at least as safe as traditional lending.

Finally, we show that a particular set of locally convex payoff functions can be replicated
by borrowing against LP positions (which are necessarily concave), extending the results
of [AEC21] to convex payoffs. This demonstrates that borrowers of LP shares are incentivized
to create positions in order to construct bounded convex exposures (e.g. barrier options) in
a decentralized manner. Combined, these results demonstrate that a) lenders can provide
improved capital efficiency b) lenders can hedge their risks with portfolio insurance and
c) borrowers can cheaply construct leveraged positions. Given the reduced computational
complexity of CFMMs, this suggests that the space of decentralized, on-chain finance is at
least as large as those of traditional financial products.

2 Formalism

2.1 Lending Protocols

Decentralized lending protocols such as Aave [FCCM21] and Compound [KCCM20] allow
users to trustlessly execute overcollateralized loans between cryptoassets. A user of a lending
protocol deposits collateral of coin i into a smart contract that pools assets by type. For
instance, a user might deposit 100 ETH or $100,000 into this contract. A borrower is a
user that borrows another cryptoasset against their deposited collateral. For instance, a
borrower might deposit 100 ETH and borrow $10,000 against their ETH collateral. The
loans are overcollateralized in that the value of the borrowed asset must always be less than
the value of the deposited collateral (where value is measured in relative terms).

Formally, let pi,j(t) be the price of asset i in terms of asset j. If a user deposits X units
of asset j into the protocol, they can borrow at most cf · pi,j(t) · X units of asset i. The
constant cf ∈ (0, 1) is known as the collateral factor and represents the maximum borrowable
quantity relative to the price. A small collateral factor is conservative and less-risky for the
lender, but is capital inefficient for the borrower. On the other hand, a collateral factor near
1 is risky for the lender but capital efficient for the borrower.

Suppose that at time t > 0, a borrower deposits X units of asset j and borrows Y <
cf ·pi,j(t)·X units of asset i. If at any time t′ > t, the borrower has not repaid the loan then the
loan is in one of two states. The loan is liquidatable when cf · pi,j(t′) ·X < Y . A liquidatable
loan can be partially liquidated from the protocol, leaving the borrower with collateral
X ′ < X that is still redeemable. A loan is insolvent or defaulted when pi,j(t

′) ·X < Y . When
in this state, the entire loan can be liquidated and the borrower cannot redeem any collateral
(e.g. X ′ = 0 doesn’t change). Both liquidatable and insolvent loans are effectively auctioned
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(akin to a foreclosure auction) to a user who buys it from the smart contract at a discount
(known as the liquidation incentive). Liquidatable loans will have a portion of the loan
auctioned (e.g. the amount∆X needed to return the loan to a state cfpi,j(t

′)(X−∆X) > Y ),
whereas insolvent loans are completely liquidated. The goal of lending protocols is to choose
cf (as well as other parameters, such as the liquidation incentive and the interest rate curve)
such that the expected number of liquidations is minimized while remaining attractive for
borrowers.

Currently, lending protocols such as Aave and Compound allow for any ERC-20 asset
to be borrowed or lent (upon approval from a governance vote). This includes LP tokens,
which can be represented using token standards such as ERC-20.1

2.2 CFMMs

We will briefly review the basic definitions needed for constructing a CFMM (for more details,
we encourage the reader to refer to [AC20,EAC21,AEC21]. Suppose that we have a CFMM
described by a convex trading function ϕ : Rn

+ → R, as described in [AC20, §1]. At each
time t ∈ N, the reserves R(t) ∈ Rn

+ determine a set of marginal prices, pϕi,j(t), defined as:

pϕi,j(t) =
∂iϕ(R(t))

∂jϕ(R(t))

which is the price of coin i in terms of coin j. Without the loss of generality, we will
assume that the first index is the numéraire and use the notation pϕi (t) = pϕi,1(t) and pϕ(t) =
(pϕ1 (t), . . . , p

ϕ
n(t)). The numéraire portfolio value of a CFMM, Pϕ

V (t), is the total value of the
assets measured relative to a numéraire and is defined as

Vϕ(p
ϕ(t)) =

n!

i=1

Ri(t)p
ϕ
i (t) = R(t) · pϕ(t)

3 Capital Efficiency

Consider a Compound market where asset A can be borrowed against asset B with collateral
factor (or loan-to-value) cf . Similarly, consider a second Compound market where asset A
can be borrowed against a Balancer pool consisting of assets A and B with collateral factor
cLPf . For this pool, the trading function can be represented as,

ϕ(Ra, Rb) = Rwa
a Rwb

b

where the weights wa, wb ∈ (0, 1) satisfy wa + wb = 1. By definition, collateral factors are
defined as the ratio of the maximum quantity qA that can be borrowed given quantity qB

1We note that Uniswap V3 [AZS+21] turns LP tokens into non-fungible tokens rather than ERC-20 assets.
However, these NFTs can be fractionalized/securitized into ERC-20s to recover the ability to be borrowed
and lent.
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as collateral at price pA,B(t). We extend this definition to portfolios (such as CFMMs) by
defining the collateral factor as the ratio of the maximum borrowable quantity qA to the
A-denominated portfolio value of the collateral. Using this definition we can write cf , c

LP
f in

terms of the borrowable quantities

cf =
qA

qBpA,B(t)

cϕf =
qA

wAqA + wBqBpA,B(t)

We can write cϕf in terms of cf as

cϕf =
qa

qBpA,B(t)

"
1

wAqA
qBpA,B(t)

+ wB

#

= cf

$
qBpA,B(t)

wAqA + wBqBpA,B(t)

%
(1)

We can have more aggressive borrowing from the LP share for fixed cf if cϕf > cf which
occurs only if

qBpA,B(t) > wAqA + wBqBpA,B(t)

⇐⇒ (1− wB)qBpA,B(t) > wAqA

⇐⇒ wAqBpA,B(t) > wAqA

⇐⇒ qBpA,B(t) > qA

Therefore, borrowing against an LP share (sans fees/growth) is more efficient than a direct
borrow if

qBpA,B(t) > qA (2)

This result demonstrates that it is possible for borrowing against an LP share to be more
capital efficient than borrowing directly against collateral. Moreover, note that equation
(1) also intimates that a dynamic collateral factor — cϕf changes as a function of price —
can exactly replicate the capital requirements of a direct collateral borrowing at collateral
factor cf . This also suggests that LP share lending is better than direct collateral lending
(sans impermanent loss) — with the proper selection of collateral factors, a lender can earn
fees from the CFMM itself (e.g. from trading activity) and from lending out the CFMM to
borrowers who want to concentrate their earnings. We have seen a number of attempts of
mixing CFMMs with lending to improve capital efficiency for trading and this result provides
some theoretical underpinning to the growth of these platforms [Ayo21].

Note that this analysis does not account for accrued fees and it is possible for this
condition to be weakened. If fA, fB ∈ R are the net accrued fees, then we can replace qA, qB
with qA + fA, qB + fB in eq. (2). Note that these accruals can be negative (to account for
so-called impermanent loss). Finally, note that we generalize the two component borrowing
with LP shares as collateral to the general n-dimensional scenario of borrowing LP shares
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against other LP shares in Appendix A. Since we can embed traditional borrowing within
the context of LP share borrowing (e.g. by making the portfolio weights a delta function),
this is the most generic type of lending/borrowing activity in DeFi.

4 Replicating Portfolio of a CFMM lender

A natural question to ask is if it is possible to describe the position held by a CFMM lender
in terms of other financial instruments. For instance, a CFMM lender such as the Maker
or Alpha Homora protocols is holding collateral (e.g. an LP share) and effectively gives a
borrower a call option to repurchase their collateral. Concretely, one might ask if one can
describe the net position held by Compound by prices and option prices on particular crypto
assets. Abstractly, this intimates that the exposure of a CFMM lender is similar to that of
a covered call. The goal of this section is to make this intuition more precise and to provide
formulas for the risk held by the protocol as a lender. The main assumptions made will be
standard quantitative finance assumptions regarding no-arbitrage. Recent work has shown
that covered calls can be emulated by CFMMs and we illustrate that the exposure that a
CFMM lender holds can be replicated by another CFMM [AEC21]. This recursive nature
of replicating a lender using CFMMs suggests that CFMMs are the fundamental building
block of both trading and lending in compute constrained, decentralized settings.

The analogy made to covered calls, which while intuitively apt, is not quite precise. In
a lending protocol without liquidations (e.g. Synthetix prior to SIP-15), the position held a
lending protocol is closest to that of a covered quanto call position [H+09, Ch. 29] [Wys10].
However, without liquidations, the no-arbitrage, complete market behavior of exercising an
option when it has positive value doesn’t exist. To motivate later constructions, we will first
describe an example of why a covered call is not the correct model for CFMM lending.

4.1 Quanto Options and Covered Calls

Suppose that a borrower opens up a position where they place qc units of collateral in a
lending smart contract and borrow qb units of borrowed asset. Let p(t) be the price of the
collateral asset in units of borrowed asset and p(t0) be the price at the time t0 that the borrow
position was opened. Assume that the borrower maximizes their borrow so that qc

p(t0)qb
= cf

for a collateral factor cf ∈ (0, 1). The liquidation price, pliq = cfp(t0), is the price at which
the lender loses money. The protocol’s portfolio consists of qc units of collateral and an
obligation to let the buyer buy back qc units of collateral for qb units of borrowed asset (plus
interest). If p(t) < cfp(t0) and the protocol was replicated by a covered call (short put plus
premium), then the borrower can buy back qc units of collateral for p(t)qb < cfp(t0)qb < qc
units of collateral and books a profit of qc−p(t)qb units of collateral asset. Clearly, the lender
wants to avoid such a scenario as they have to pass losses through the liquidity providers.
Note that in finance terminology, that an option with an adjustable delivery quantity is
called a quanto option — an option struck in one asset, paid back in another [H+09, Ch.
29].
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In practice, protocols limit the amount that can be bought back when p(t) < cfp(t0)
by using liquidations. A protocol executes a liquidation by effectively selling a slightly out
of the money option to any market participant (a set which includes the borrower). There
are two broad ways that protocols execute liquidations. Protocols like Compound and Aave
will choose a ∈ (0, 1

2
) and allow a market participant to buy the collateral for (1− a)cfp(t0)

provided that p(t) < cfp(t0). The discount percentage a is known as a liquidation incentive.
On the other hand, protocols like MakerDAO auction off the collateral at a price atcfp(t0)
where at ∈ (0, 1) is non-increasing in t > 0. A market participant who executes this option
at a price lower than spot price p(t) is known as a liquidator. Given that the implicit option
is only valid when p(t) < cfp(t0), the protocol is effectively selling a barrier option [H+09]
to the market at a strike price that is discounted (e.g. (1 − a)cfp(t0)). Combined, these
two observations indicate that lending protocols — both CFMM lenders and direct lenders
of underlying assets — are effectively selling options to market participants. However, the
nature of these options is different depending on which participant executes the option and
the barrier price (e.g. the liquidation price cfp(t0)).

4.2 Parameters in Aave and Compound

In the preceeding sections, we were somewhat lax with our treatment of collateral factors
and liquidation thresholds. This section will focus on mapping the precise parameters used
in Aave and Compound to a reduced collateral factor ℓ, that we will use in the quantitative
results of the sequel. The two largest pure lending protocols in DeFi are Aave [FCCM21] and
Compound [KCCM20]. These protocols have both had over $5 billion of assets held within
them and have issued hundreds of billions of dollars of loans over their lifetimes. While
the two protocols are extremely similar, they have differences in terminology for parameters
utilized. In this section, we will describe how their parameters map to the ones used in the
sequel.

As in §3, the collateral factor is defined as the maximum amount that can be borrowed
given a particular collateral deposit. Compound invented this terminology [LH19], whereas
Aave refers to the same quantity as loan-to-value or LTV. For consistency, we will refer to
LTV symbolically as cf throughout this paper. Another important parameter is the liquida-
tion threshold, ℓt ∈ (0, 1), which is the point at which a loan is defined to be liquidatable.
Note that by definition cf ≤ ℓt. To see this, note that cf defines the maximum borrow given
an initial collateral position and price of the collateral asset in units of borrowed asset, p(t0).
If ℓt < cf , then a maximum sized loan (e.g. qb such that qb

p(t0)qc
= cf ) would be instantly

liquidatable on creation.
Compound and Aave differ in how they define these two parameters. In Compound, one

always has ℓt = cf , such that a maximum sized borrow position is instantly liquidatable if
p(t0+ε) < p(t0) for some ε > 0. In Aave, these are kept as separate parameters, only subject
to the condition cf ≤ ℓt. If a borrower maximizes their position (qb, qc) such that cf = qb

qcp(t0)
,

then the price of liquidation in Aave is define as

paaveliq =
cf
lt
p(t0)
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If p(t) <
cf
lt
p(t0), then the liquidator can buy back qc units of collateral with

qcp(t) < qc
cf
lt
p(t0) =

qb
lt

units of borrowed asset. For the rest of this section, we will let ℓ =
cf
lt

be the reduced
collateral factor, which plays a role in the model constructed in the next section.

4.3 Model Description

In the rest of this section, we will make some additional assumptions to ease the usage
of no-arbitrage pricing. Without the loss of the generalize, we will describe the model
in terms of borrowing an asset B using collateral of asset A without specializing the the
scenario where assets A and B are CFMMs. The analysis of §3 justifies this as we can
replicate parameters such as the collateral factor, for a CFMM by dynamic adjustment of
the parameters described in this section. Firstly, we assume that the prices of the collateral
asset Scollateral(t) and borrowed asset Sborrow(t) obey geometric brownian motions relative to
a fixed, common numéraire:

dScollateral(t) = (rc − r)Scollateral(t)dt+ σcScollateral(t)dW
c
t (3)

dSborrow(t) = (rb − r)Sborrow(t)dt+ σbSborrow(t)dW
b
t (4)

dW b
t dW

c
t = −ρdt (5)

where rb, rc and r are the risk-free rates on the borrowed asset, collateral asset, and numéraire,
respectively, and ρ is a correlation term. Note that ρ is negative due to no-arbitrage pricing:
the triangle of selling numéraire for borrowed asset, selling borrowed asset for collateral asset,
and then finally selling collateral asset for numéraire needs to have zero profit (which only
occurs when the correlation is negative).

In this notation, we can write p(t) = Scollateral(t)
Sborrow(t)

and an application of Ito’s lemma and

the chain rule gives (c.f. [Wys10, Eq. 6])

dp(t) = (rb − rc − σ2
b − ρσbσc)p(t)dt+

$&
σ2
b + ρσbσc

%
p(t)dW p(t)

where dW p(t) is a Brownian motion independent of W c,W b. For simplicity, we will denote
the associated drift and volatility of this process as follows:

µp = rb − rc − σ2
b − ρσbσc (6)

σ2
p = σ2

b + ρσbσc (7)

4.4 Borrower: Digital Call Option

We first claim that a lending protocol sells a quanto digital call option to the borrower. A
quanto digital call option [Wys10, §1.4] is an option with payoff DO(K,S,Q) defined as,

DO(K,S,Q) = Q1S≥K
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where S is the price of the borrowed asset in terms of the collateral asset, K is a strike price,
and Q is the quanto factor. The quanto factor represents the notional in the settlement asset
(e.g. collateral asset) that is paid when the option is executed provided that S ≥ K. In
the case of a lending protocol, we claim that the borrower holds a digital option with payoff
DO(ℓp(t0), p(t), qc), where qc is the collateral placed in the protocol. Note that this option
naturally expresses the idea that the borrower can only retrieve their collateral provided that
p(t) ≥ ℓp(t). Standard option pricing theory shows that the no-arbitrage value of a quanto
digital option is [Wys10, §1.4]:

DO(c̃f , p(t0), qc) = E
GBM(µ,σ)

[DO(ℓp(t0), p(t), qc)] = qce
−rcTN(d−) (8)

where:

• GBM(µ, σ) is a geometric brownian motion with mean µ and standard deviation σ

• N : R → [0, 1] is the normal cumulative distribution function, N(x) =
' x

−∞ e−
x2

2 dx

• d± =
− ln ℓ+(µp± 1

2
σ̃p

2)

σp
√
t−t0

If we take the derivative of (8) with respect to cf , we find

∂ℓDO(ℓ, p(t0), qc) = −Ω

$
ℓ

1

σp
√

t−t0
−1
%

Firstly, this shows that the price of the option decreases as the collateral factor increases.
This captures the intuitive that the option is less valuable the more likely you are to be
liquidated. Secondly, let τ = 1

σ2
p
. While t < t0 + τ , the impact of a high collateral factor on

option value is large, whereas when t > t0 + τ the impact of a low collateral factor is larger.
Recall that cf ∈ (0, 1) represents the maximal percentage of borrowable assets. When cf is
near 1, a loan is much more likely to be liquidated, regardless of volatility. However, when
the ℓ is near 0, a loan is only likely to be liquidated under extremely large price moves. The
likelihood of these occurring when t < t0 + τ is very low and hence there is little impact on
the option value. However, after t > t0 + τ , the probability of this happening is non-trivial
and we see a large impact on option price. Combined, these observations illustrate that
the option value can handle relatively high collateral factors (higher capital efficiency) for
long periods of time only if the asset volatility is low. Unlike prior numerical assessments
of this risk [KCCM20], we were able to arrive at this result strictly via no-arbitrage pricing
arguments. This result also suggests that repeated updates to collateral factors according
to volatility [FCCM21] is theoretically justified.

4.5 Liquidator: Barrier Option

On the other hand, the liquidator is issued a barrier option that is only executable when
p(t) < ℓp(t0). This is known as a down-and-in call and can be statically replicated via
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standard options [CEG99]. Let C(K) be the price of a standard call option struck at K
and let P (K) be the price of a standard put option. Then we can write the payoff of a
down-and-in European call with barrier at H > K, DOIC(K,H), as

DOIC(K,S,H) = (S −K)+1S≤H

Put-call symmetry replication results from [CEG99, §II.A] show that

E[DOIC(K,S,H)] =
K

H
E

(
P

$
H2

K

%)

For Aave and Compound, we can view the liquidator as holding a down-and-in call struck
at a discount to the liquidation price K = (1− a)ℓp(t0) and with barrier ℓp(t0). Therefore,
the expected value of this option under no-arbitrage pricing to the liquidator is:

E[DOIC((1− a)ℓp(t0), p(t), ℓp(t0))] = (1− a)E

(
P

$
ℓp(t0)

1− a
, p(t)

%)
(9)

where P (K,S) is a put struck at K with current price S. If we add a quanto factor and use
the traditional Black-Scholes pricing formula [H+09], this gives a liquidator option value of

DOIC(a, cf , p(t0), t, qc) = qc E
GBM(µ,σ)

[DOIC((1− a)cfp(t0), p(t), cfp(t0))] (10)

= (1− a)qce
−rτ (N(−d−)

cfp(t0)

1− a
−N(−d+)e

rτp(t)) (11)

where

d± =
1

σ
√
τ

$
ln

1− a

ℓ
+ r ± 1

2
σ2

%

and τ = t − t0. We note that more complicated exposures taken by liquidators such as
the pooled exposure of Liquity [KCCM21] or the auction of MakerDAO [KL21] can also be
replicated, although the Black-Scholes put-call symmetry formula doesn’t apply. In [CL09,
§5], one uses put-call symmetry to approximate asymmetric barrier options, which can be
used for ascending or descending auctions (e.g. at is monotone).

4.6 Combined Exposure

Combining equations (8) with (9) intimates that under no-arbitrage, no liquidator compe-
tition, and geometric brownian motion (effectively the same assumptions as Black-Scholes),
the portfolio held by the lender can be replicated by:

• qc units of collateral

• Short DO(ℓp(t0), p(t), qc)

• Short DOIC((1− a)ℓp(t0), p(t), cfp(t0))
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Using standard no-arbitrage arguments, it can be shown that C(K, p(t)) ≥ DOIC((1 −
a)ℓp(t0), p(t), ℓp(t0)) + DO(ℓp(t0), p(t), qc). Intuitively, this follows from the idea that an
unconditional call option C(K, p(t)) is more valuable than the sum of the two conditional
options unless a = 1 and the option is European. This demonstrates that a CFMM lender
is more overcollateralized than a covered call and as per [AEC21, §4], this exposure can be
replicated via a CFMM.

5 Convex Payoff Approximation

Recently, it was shown that there is a bijective correspondance between certain concave payoff
functions and CFMM trading functions. In [AEC21, §1.1], it is shown the 1-homogeneous,
increasing, non-negative, concave payoff functions V : Rn → R can be replicated by holding
LP shares. Given that a number of payoff functions that exist in finance are convex, such as
the payoff of a call option, a natural question is whether CFMMs can be used to replicate
convex positions. One natural way to do this is to short a CFMM share, which is enabled
by lending. If a CFMM share has concave payoff function V (c), then shorting the CFMM
share should yield payoff −V (c), which is convex.

Let V (ct) be the portfolio value of a CFMM share (in numéraire terms) at time t and
suppose that a lender allows a user to use a numéraire as collateral for borrowing a CFMM
share at time t0 > 0. The user flow for using this to short a CFMM share is the following:

1. User places 1
cf
V (ct0) of numéraire in CFMM lending protocol, borrows 1 LP share

2. User sells LP share for numéraire, holds V (ct0) of numéraire

3. User is profitable if V (ct) < V (ct0), but is liquidated if there is t > t0 such that
V (ct) ≥ 1

cf
V (ct0) (e.g. portfolio value increased by 1

cf
)

Therefore, if a user shorts a CFMM share their value function is:

Ṽ (ct) = −V (ct)1cfV (ct)<V (ct0 )

Note that this function is not convex or even quasiconvex, but it is convex when cfV (ct) <
V (ct0).

6 Conclusion

To the best of our knowledge, our results represent the first formal risk analysis of a compos-
ability in DeFi. We believe these results are useful for protocol designers, liquidity providers,
and for active traders who want complex exposures in DeFi. These results demonstrate that
composing DeFi protocols can lead to a much broader set of financial products with vary-
ing trade-offs. Utilizing lending to generate convex payoffs opens up the CFMM design
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space, which had mainly been limited to 1-homogeneous, concave functions. A deeper un-
derstanding of how CFMM lending works also provides quantitative bounds on how to design
protocols with respect to risk and efficiency. Analyzing how to compare collateral factors
for different LP shares provides a clear description of capital efficiency trade-offs that occur
when borrowing against LP shares vs. underlying assets. On the other hand, replicating a
protocol’s portfolio exposure allows for one to compute approximate hedges for protocols.
These replication results were inspired by the spirit of [CL09], which states

We view [put-call symmetry] results as part of a broad program that aims to use
European options — whose values are determined by marginal distributions—to
extract information about path-dependent risks, and to hedge those risks robustly

In a similar vein, we view the path-dependent risks held by lenders in protocols like Aave as
eminently hedgeable by portfolio insurance. As there has been an increase in the usage of on-
chain insurance funds by lending protocols to improve capital efficiency [FCCM21,KCCM21],
these results can be utilized to provide more precision insurance constructs for protocols.
On the other hand by utilizing an explicit replication, sophisticated LPs can more precisely
control their exposures by utilizing lending and our results.
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A Borrowing LP shares against other LP shares

A natural question is how the results of §3 generalize to n-asset Balancer pools [AC20].
Instead of extending the previous section to borrowing more than 1 asset against and LP
share as collateral, we instead consider borrowing an LP share against another LP share. It
will turn out that borrowing n assets against an LP share is a special case of borrowing LP
shares against one another. This is a consequence of the linearity of portfolio value.

Suppose that we have an oracle price p(t) ∈ RNa
+ where Na ∈ N is the number of assets of

interest. Further, suppose we have n CFMMs with Balancer trading functions ϕi : R
Na → R

with weights wi ∈ RNa
+ and reserves Ri ∈ RNa

+ . Our goal is to consider loans that borrow ϕi

LP shares using ϕj LP shares as collateral. Note that oracle price is the argument in the dual
function representation of portfolio value [AC20, §4] and represents either an aggregation of
the prices implied by {ϕi} or the prices quoted in an infinitely liquid external market.

We first define a generalized collateral factor ci,j as the maximum number of ϕj LP shares
that you can borrow using ϕi LP shares as collateral. This means that given any admissible
borrows of bi, bj ∈ R+ units of LP shares and reserves Ri(t), Rj(t) in the respective trading
sets, we have:

ci,j ≥
bjw

T
j (p(t)⊙Rj(t))

biwT
i (p(t)⊙Ri(t))

where ⊙ : Rn ×Rn → Rn is component-wise multiplication of two vectors,

(a⊙ b)i = ai × bi

Note that we recover standard collateral factor and/or loan-to-value on Aave or Compound
when wi = δi,k for some k ∈ [n], which is an infeasible weight for Balancer. We can thus
view direct overcollateralized borrowing of assets as a limit of borrowing LP shares against
LP shares, where the ‘weights’ of Compound borrowing look like the following

wi(n) = lim
n→∞

$
1− 1

n

%
δi,k +

1

n
δi,l

for l ∈ [n], l ∕= k. In a sense, direct asset borrowing is an analytic continuation of CFMM
borrowing, which demonstrates that CFMM borrowing is the most general form of lending
activity.

Analysis akin to the §3 shows that if we have c̃i,j, w̃i, R̃i for a different LP share lending
protocol, then

ci,j ≥ c̃i,j ⇐⇒
bjw

T
j (p(t)⊙Rj(t))

biwT
i (p(t)⊙Ri(t))

≥
b̃jw̃

T
j (p(t)⊙ R̃j(t))

b̃iw̃T
i (p(t)⊙ R̃i(t))

Note that we implicitly assume no-arbitrage (akin to [AEC20]) because we use the same
oracle prices p(t) on both sides of the inequality. Define vi(t) = biRi(t)⊙wi (and likewise for
ṽi(t)), which corresponds to the weighted portfolio value of the lien. Using this definition,
we can rewrite the previous equation as,
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cij ≥ c̃ij ⇐⇒ vi(t)
Tp(t)

vj(t)Tp(t)
≥ ṽi(t)

Tp(t)

ṽj(t)Tp(t)
⇐⇒

$$
ṽj(t)

Tp(t)

vj(t)Tp(t)

%
vi(t)− ṽi(t)

%T

p(t) ≥ 0

Since prices satisfy p(t) ≥ 0, this is equivalent to

$
ṽj(t)

Tp(t)

vj(t)Tp(t)

%
vi(t)− ṽi(t) ≥ 0 ⇐⇒

*

+,

-
ṽj(t)

vj(t)
⊙ vj(t)

.T

p(t)

vj(t)Tp(t)

/

01 vi(t)− ṽi(t) ≥ 0 (12)

where division is equivalent to element-wise division. Let C = infk
ṽj(t)k
vj(t)k

, so that eq. (12)

gives the following sufficient condition for comparing collateral factors:

Cvi(t) ≥ ṽi(t) =⇒ cij ≥ c̃ij ⇐⇒ CbiRi(t)⊙ wi ≥ b̃iR̃i(t)⊙ wi

This is the analogue of the result of §3 which provides conditions for comparing collateral
factors of two different lenders. While this result is weaker than the collateral factor equiv-
alence in the two asset scenario of §3, it shows that the worst-case relative portfolio values,
C, controls borrow capital efficiency.
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