
How Liveness Separates CFMMs and Order Books

Tarun Chitra
tarun@gauntlet.network

Guillermo Angeris
angeris@stanford.edu

Alex Evans
ahe4nc@gmail.com

October 2021

Abstract

Constant function market makers (CFMMs) are popular mechanisms for trading
of digital assets. However, they have notable drawbacks relative to conventional limit
order books common to equity markets. These drawbacks include economic adverse se-
lection costs for liquidity providers and poorer latency response for active traders. But
are order books really better in a decentralized setting? Empirical evidence suggests
that when decentralized systems lose liveness, CFMMs are preferred to order books by
liquidity providers. Liveness losses often correlate with large price changes off-chain, so
that residual on-chain liquidity can dampen liquidation cascades upon regaining live-
ness. We provide a theoretical underpinning for when one should prefer a CFMM to
an order book. Our results demonstrate that application-level liveness interacts with
consensus liveness in a non-trivial manner.

While constant function market makers (CFMMs) have grown to hundreds of billions
of dollars of annualized trading volume, they have not been able to provide the latency
response of traditional trading mechanisms (e.g. order books). The latency issue is acute
for CFMMs with unbounded price support (e.g. there exists liquidity to execute a trade at
every possible price) as they take longer to adjust to order flow since they cannot concentrate
liquidity around highly demanded prices. On the other hand, traditional order books and
bounded support CFMMs (also known as ‘concentrated liquidity’) allow liquidity providers
to adjust their liquidity to only be executed against certain types of order flow. Historically,
these mechanisms have not worked on blockchains due to the relatively high latency of
confirmation (which is on the order of seconds) [Kov].

Recently, as (relatively) low confirmation latency blockchains such as Solana [Yak18]
have launched, there have been a number of order book and order book like mechanisms
implemented on these new chains. Moreover, the launch of Uniswap V3 has begin a process
of “hybridization” between continuously priced mechanisms such as CFMMs and discrete
ones like order books. Uniswap V3 localizes a CFMM’s liquidity, allowing users to effectively
create limit orders by only contributing liquidity within a price range. A natural question to
ask is if there is a theoretically sound way to classify the differences between CFMMs and
order books.

1

We turn to historical events to guide our framework. Recently, there was a loss of liveness
on the Solana blockchain that lasted for 7 hours. While the chain was not live, the Proof of
Stake (PoS) asset SOL lost over 25% in market value on centralized exchanges. Decentralized
exchanges hosted on SOL, both order books and CFMMs, had prices frozen whereas off-chain
exchanges (e.g. centralized exchanges such as FTX, Coinbase, or Binance) still allowed for
trading. Upon regaining liveness, there was a chaotic rush to update existing positions.
Market makers on off-chain order books had to cancel orders at the previous price (25%
above fair value) while on-chain lending platforms had loans on their books that were in
default that needed to be liquidated. This effectively led to a race condition to decide which
orders would be confirmed upon regaining liveness. Observers could see some liquidations
execute before order book market makers could pull orders [Shu]. On the other hand, Solana-
based CFMMs such as Saber, had smoother operations, as arbitrageurs smoothly adjusted
the on-chain price to the external market price. The Serum order book had a roughly 37%
loss of liquidity upon nework restart versus the Saber CFMM’s roughly 5% loss in liquidity
[def]. Given this difference in outcomes in practice, a natural question to ask is, “how and
when exactly do order books and CFMMs behave differently?”

In this note, we will formalize this intuition by analyzing liquidity provider losses under
large price shocks for LPs of CFMMs and order books. This will provide a way for us to look
at differences in losses when a price shock is caused by a tail event such as a loss of liveness in
a blockchain. To do this, we will utilize the equivalence between pro-rata limit order books
[FL08] and concentrated liquidity market maker such as Uniswap V3 [AZS+21a]. We will
then show that, asymptotically, there are different rates of growth for the losses than an LP
realizes. Using this asymptotic rate of growth, we are then able to bound the number of
operations (e.g. blockchain transactions) needed to handle a price change of size ∆p. Our
results demonstrate that in the worst case, order books requires Ω(∆p) transactions to be
executed whereas traditional CFMMs require O(1) transactions to adjust the price.

When a blockchain is unable to regain liveness or has inconsistent liveness, it will have
dramatically reduced throughput. In such scenarios, market mechanisms that require O(1)
transactions to update prices are strongly preferred to those whose number of transactions
scales with price. This result demonstrates, at least asymptotically, that CFMMs with non-
concenrated liquidity outperform order books in such events. In Appendix A, we illustrate
a framework for a more direct comparison between consensus protocol liveness and liquidity
provider losses. This suggests that an application-specific formulation of liveness that quan-
tifies the number of transactions needed to return an application to a safe state is necessary
for DeFi protocols.

1 Preliminaries

1.1 Constant function market makers

A constant function market maker is a contract that holds some amount of reserves R,R′ ≥ 0
of two assets and has a trading function ψ : R2×R2 → R. Traders can then submit a trade

2

(∆,∆′) denoting the amount they wish to tender (if negative) or receive (if positive) from
the contract. The contract then accepts the trade if

ψ(R,R′,∆,∆′) = ψ(R,R′, 0, 0),

and pays out (∆,∆′) to the trader.

Curvature. We briefly summarize the main definitions and results of [AEC20] here. Sup-
pose that the trading function ψ is differentiable (as most trading functions in practice are),
then the marginal price for a trade of size ∆ is

g(∆) =
∂3ψ(R,R′,∆,∆′)

∂4ψ(R,R′,∆,∆′)
.

Here ∂i denotes the partial derivative with respect to the ith argument, while ∆′ is specified
by the implicit condition ψ(R,R′,∆,∆′) = ψ(R,R′, 0, 0); i.e., the trade (∆,∆′) is assumed
to be valid. Additionally, the reserves R,R′ are assumed to be fixed. The function g is
known as the price impact function as it represents the final marginal price of a positive
sized trade. When there are fees, one can show that gfee(∆) = γg(γ∆) where 1− γ denotes
the percentage fee. We say that a CFMM is µ-stable if it satisfies

g(0)− g(−∆) ≤ µ∆

for all ∆ ∈ [0,M] for some positive M . This is a linear upper bound on the maximum price
impact that a bounded trade (bounded by M) can have. Similarly, we say that a CFMM is
κ-liquid if it satisfies

g(0)− g(−∆) ≥ κ∆

for all ∆ ∈ [0, K] for some positive K. One important property of g is that it can be used
to compute ∆′ [AEC20, §2.1]:

∆′ =

∫ ∆

0

g(t)dt (1)

Simple methods for computing some µ and κ in common CFMMs are presented in [AEC20,
§1.1].

Two-sided bounds. We can define similar upper and lower bounds for g(∆)− g(0), with
constants µ′ and κ′, which hold when the trades ∆ are in intervals [0,M ′], [0, K ′], respectively.
For the remainder of this paper, we will refer to µ-stability as the upper bound for both
g(0) − g(−∆) and g(∆) − g(0), and similarly for κ-liquidity. More specifically, given µ, µ′,
we say that a CFMM is symmetrically µ′′-stable if

|g(∆)− g(0)| ≤ µ|∆|,

when −M ≤ ∆ ≤M ′, and symmetrically κ′′ stable if

|g(∆)− g(0)| ≥ κ|∆|.

3

when −K ≤ ∆ ≤ K ′. From the above, it suffices to pick µ′′ = min{µ, µ′} and κ′′ =
min{κ, κ′}.

Note that any two-sided µ-stable and κ-liquid market maker is automatically η-stable
and η-liquid for η = max(κ, µ). An η-liquid and η-stable impact function is bi-Lipschitz
and admits an inverse g−1(p) that is also bi-Lipschitz [CMN19]. In particular, if g is η
bi-Lipschitz, then g−1(p) is 1

η
bi-Lipschitz:

1

µ
p ≤ |g−1(p)− g−1(0)| ≤ 1

κ
p

Bounded Support CFMMs and Order Books. CFMMs with bounded price support
(also known as “concentrated liquidity”) were first introduced by Uniswap V3 [AZS+21b].
Such CFMMs were also shown to be able to replicate a variety of concave payoff functions
such as covered calls and variance swaps [AEC21b, AEC21c]. Any bounded support mech-
anism M is defined by a triple, M = (T , L, g) where

• T = {(ai, bi) : ai < bi} ⊂ R+ ×R+ is a totally ordered set of ticks that partition the
price space, e.g.

⋃
{ai,bi}∈T [ai, bi) = [0,∞)

• L is the amount of liquidity at each tick, represented as a function L : T → R

• g is the price impact function of the market maker

Since the set of ticks is totally ordered, we will refer to (Li, L
′
i) = L(Ti) where Ti is the ith

tick in the ordering of T , Li is the liquidity of the risky asset and L′i is the liquidity of the
numéraire.1 Moreover, we define the size of a tick T = (a, b) to simply be |T | = b− a

Uniswap V3 allows LPs to deposit coins into a set of CFMM pools specified by a price
range [a, b] ⊂ R. The mechanism MV 3 ensures that an LP’s coins are only used when
the prices offered by the market maker are in the range [a, b]. More precisely, Uniswap V3
generates a series of logarithmically-spaced ticks Ti = [bi, bi+1] for a base b > 1. Here we
assume that bi is in units of numéraire, so that when the price goes up from bi to bi+1, it
costs more numéraire to purchase the risky asset. At each tick, there is a CFMM pool that
utilizes the constant product formula [AEC21a] for executing increasing trades when the
price p is within the band [bi, bi+1). When an LP deposits liquidity for a price range [a, b],
it is added to all pools associated to ticks Ti such that Ti ∩ [a, b] 6= ∅. Define the support
of any bounded support CFMM M (including MV 3), supp(M), to be the set of ticks that
have non-zero liquidity, e.g.

supp(M) = {t ∈ T : L(t) > 0}

One can view Uniswap V3 as a pro-rata order book. Suppose that (Li, L
′
i) ∈ R+ is the

aggregated quantity of liquidity provided in the risky asset Li and numéraire L′i in the pool

1To simplify narration, we assume that one asset is risky and the other is a numéraire. However, our
construction works for any 2-asset CFMM

4

associated to Ti. When a trade demands ∆ units of risky asset to trade within Ti (e.g. the
price before and after the trade is in Ti), liquidity is adjusted to Li −∆ and Li + ∆′, where
∆′ is as in (1). On the other hand, if a trade of size ∆ crosses a tick boundary, some fraction
∆i ≤ ∆ will be executed against each tick Ti such that ∆ =

∑
i ∆i. When a trade of size

∆i is executed against Ti, all LPs with Ti ⊂ [a, b] will earn a pro-rata share of fees generated
by the trade of size ∆i. Therefore, we can view the liquidity in each tick Ti as equivalent
to a price level in a pro-rata order book [FL08]. In particular, a Uniswap V3 pool can
replicate any liquidity profile of an order book provided that liquidity providers rebalance or
repeatedly update their ranges as a function of price [Cla21, NRMP21, Fri21].

This equivalence between pro-rata order books and Uniswap V3 implies that we can
analyze a sequence of n bounded liquidity pools versus a single large pool to compare order
books to (traditional) CFMMs. We note that the pro-rata nature of the order book can lead
to different arbitrage strategies than FIFO (or time priority) order books [GP15]. However,
these distinctions become less important as |Ti| → 0. For the the rest of this paper, we will
interchangeably refer to pro-rata order books and sequences of bounded support CFMMs
(like Uniswap V3).

2 Asymptotic Liquidity Provider Returns

Prior theoretical work on analyzing liquidity provider returns has focused on the unbounded
support CFMM setting [AEC20, §2]. In order to analyze the behavior of CFMMs and order
books under a large price shock (such as one caused by a loss of liveness in the underlying
chain), we need to consider liquidity provider returns for bounded liquidity market markers.
We will do this in two steps: first for Uniswap’s constant product curve and then for a
general, positive curvature CFMM. Uniswap, as an example, will illustrate some of the
necessary properties for providing non-trivial bounds.

Portfolio Value. Recall that the portfolio value is the net present value of the assets
owned by an LP in numéraire terms. For a two asset CFMM with risky and numéraire
reserves (R,R′), the portfolio value is V (p0) = p0R+R′, where p0 is the quoted price of the
risky asset in numéraire terms [AEC21c]. Given a trade of size ∆ and an initial price p0, we
can write the change in portfolio value in terms of the price impact function g as [AEC20,
§3.1]

PV (∆) = g(∆)(R−∆) + (R′ + ∆′)

where g(∆) ≥ g(0) = p0 and ∆′ is as per (1). We will analyze the change in portfolio
value when there is a large price change from p0 to p with p � p0. Our main claim is that
CFMMs with unbounded support have a lower asymptotic change in portfolio value than
those with bounded support. To show this, we will analyze the change in portfolio value

5

function δV (p) = PV (g−1(p))− V (p0). Plugging this into the formula for PV (∆) yields

δV (p) = p(R− g−1(p)) + (R′ + ∆′)− p0R−R′

= p(R− g−1(p)) + ∆′ − p0R

= p(R− g−1(p))− p0R +

∫ g−1(p)

0

g(t)dt (2)

where the last line uses (1). Note that since g is increasing on [0,M],

∆′ ∈ [g(0)g−1(p), g(g−1(p))g−1(p)] = [p0g
−1(p), pg−1(p)]

this allows us to lower bound (2):

δV (p) ≥ p(R− g−1(p))− p0R + p0g
−1(p) = (p− p0)(R− g−1(p)) (3)

Note that as per §1.1, g−1 exists provided that g is two-sided µ-stable and κ-liquid, which
we will assume throughout this section.

Our goal will be to study the rate of growth of δV (p) as p → ∞ or p → 0, which will
be termed asymptotic portfolio value. The asymptotic portfolio value represents the rate
of growth of profits or losses (PNL) for LPs under big price shocks. We will mainly be
interested in trying to upper and lower bound δV (p) for large and small p. Our first result
will demonstrate that LPs in bounded support CFMMs have different asymptotic portfolio
values.

Uniswap. The no-fee price impact function for Uniswap’s constant product curve is [ZCP18,
AEC20]

guni(∆) =
k

(R−∆)2

where k is the product constant. We will continue our analysis under the no-fee case, but
note that our analysis can be applied to fees as per [AEC20, App. B]. To compute δVuni(p),
we will first need to compute g−1

uni(p). Simple algebra shows that

g−1
uni(p) = R−

√
k

p

Substituting this into (3) gives

δVuni(p) ≥ (p− p0)

√
k

p
=
√
kp−

√
kp2

0

p
≥
√
kp−

√
k′p0 (4)

where the last inequality comes from p0
p
∈ (0, 1). Note that result matches [AC20, §2.5],

where the authors explicitly computed PV (p) = Θ(
√
p). However, using equation (3) to

bound δV is generic enough to handle other market makers.

6

Uniswap V3. Since Uniswap V3 uses the constant product formula, we can use (4) to
bound for δVV 3(p). When p is in supp(MV 3), we receive the same δV as the generic constant
product curve. On the other hand, when p 6∈ supp(MV 3), δVV 3(p) is necessarily linear in p
as an LP is only holding one asset. Let p+ = sup(ai,bi)∈supp(MV 3) bi be the maximum price
with non-zero liquidity in a Uniswap V3 pool. Similarly, let p− = inf(ai,bi)∈supp(MV 3) ai be the
maximum price quoted. Then we have:

PVV 3(p) =

√
kp p ∈ supp(MV 3)

p− p+ +
√
kp+ p > p+

p− − p+
√
kp− p < p−

This implies that |δVV 3(p)| = Ω(p) as supp(MV 3) is bounded. Bounded support LPs don’t
have the benefit of worst case asymptotically square root portfolio loss, unlike unbounded
support LPs.

The quadratic gap in portfolio value (which represents numéraire-denominated PNL)
between Uniswap V2 and V3 represents one notable distinction between order books and
unbounded support CFMMs. Suppose a blockchain (like Solana), loses liveness and p starts
to drift outside of supp(MV 3). When this happens, it is possible upon regaining liveness, for
LPs to suddenly start realizing the square of their ‘impermanent loss’ (opportunity cost).
Unbounded support CFMMs, however, have LPs with consistent asymptotic losses across
their price range.

Curved CFMMs. We can use eq. (3) to lower bound the asymptotic portfolio value for
curved CFMMs with unbounded support. Recall that by definition, g(0) = p0, so g−1(p0) =
0. For unbounded support CFMMs with positive curvature (κ > 0) and reserves R, it can
be shown that [AEC20]:

lim
r→R

g(r)→∞ lim
r→R′

g(−r) = 0

Therefore, Dom(g) ⊆ [−R′, R] and subsequently Range(g−1) ⊂ [−R′, R]. Therefore the
function p 7→ R− g−1(p) has a range of [0, R+R′]. Moreover, the previous limits imply that
limp→∞R−g−1(p) = 0 or equivalently, limp→∞ g

−1(p) = R. This shows thatR−g−1(p) = o(1)
and therefore (p − p0)(R − g−1(p)) = o(p). This demonstrates that the lower bound (3) on
asymptotic portfolio value for curved, unbounded support CFMMs is sublinear.

We can show a similar upper bound. Recall from (2) that δV (p) = p(R−g−1(p))+∆′−p0R
with ∆′ ∈ [p0g

−1(p), pg−1(p)]. We can bound the norm of δV (p) as follows:

|δV (p)| ≤ |p(R− g−1(p)) + pg−1(p)− p0R|
≤ |p(R− g−1(p))|+ |pg−1(p)− p0R|
≤ 2|p(R− g−1(p))|

From the above discussion, p(R− g−1(p)) = o(p), which implies that the change in portfolio
value is sublinear.

7

For a curved CFMM with bounded support, M, we instead have

lim
r→R

g(r) = p+(M) lim
r→R′

g(−r) = p−(M)

where p+ and p− are defined analogously to Uniswap V3. For p > p+, we have g(p) =
g(R) + (p − g(R)) < ∞, so limp→∞ g

−1(p) → c 6= 0. This ensures that R − g−1(p) = Ω(1)
implying worst case linear loss, δV (p) ≥ Cp, like Uniswap V3.

2.1 Approximation Error

Order books and collections of bounded support CFMMs (like Uniswap V3) can approximate
any price impact g that an unbounded support CFMM expresses. However, due to the tick
sizes, there is some approximation error. Concretely, this approximation error arises when
one tries to approximate the integral in eq. (2) by a sum of smaller integrals:∫ g−1(p)

0

g(t)dt ≈
∑

Ti∈suppM∩[0,g−1(p)]

∫
Ti

gi(t)dt (5)

where gi(t) is the price impact of the ith bounded support market maker (e.g. for tick Ti). A
natural question to ask is: how well can we approximate an unbounded support CFMM price
schedule with a sequence of bounded support CFMMs. In particular, the main question is
how many summands do we need on the right hand side of eq. (5) to ensure that∣∣∣∣∣∣

∫ g−1(p)

0

g(t)dt−
∑

Ti∈suppM∩[0,g−1(p)]

∫
Ti

gi(t)dt

∣∣∣∣∣∣ < ε

The number of summands is controlled by the tick size Ti and the precise impact function
gi.

Approximations of this form are known in the numerical analysis literature as quadrature
rules. For a function of bounded variation, which all price impact functions are [AEC20],
one can use Gaussian quadrature bounds to show that the best possible approximation is
proportional to TV (g)

n
, where TV is the total variation [FP91]. Monotone functions f on a

compact interval [a, b] have a total variation equal to TV (f) = f(b) − f(a). Therefore, the
error we can approximate an unbounded support CFMM price impact by an order book is∣∣∣∣∣∣
∫ g−1(p)

0

g(t)dt−
∑

Ti∈suppM∩[0,g−1(p)]

∫
Ti

gi(t)dt

∣∣∣∣∣∣ < C(g(g−1(p))− g(0))

| suppM∩ [0, g−1(p)]|
=
C(p− p0)

n
(6)

As such, we need to increase the number of ticks that we sum over as a function of the
maximum price interval we want to replicate. To ensure a constant upper bound on approx-

imation error over many prices, this implies the tick size needs to decrease as O
(

1
p

)
.

8

This suggests that bounded support CFMMs and order books need to adjust their tick
size in response to a large price shock. In the appendix, we connect this to the notion of
liveness from consensus protocols. As it turns out, order books require O(p − p0) update
operations to rebalance the tick size to ensure constant approximation error. In Appendix
A, we provide a way of formalizing the notion of “how many operations / transactions does
a market making mechanism need to adjust liquidity to a price change p− p0?”.

3 Conclusion

In this note, we demonstrated that the worst case loss for LPs pro-rata order books and
concentrated liquidity CFMMs is asymptotically worse than that of unbounded CFMMs.
This helps empirically support some of the observed behavior on the Solana blockchain
post loss of liveness. Our results also demonstrate that there is a clear connection between
the transaction complexity for on-chain prices to synchronize with those off-chain and the
support of a market making mechanism. Future work will illustrate how the traditional
consensus protocol notion of liveness is intertwined with the ability of an on-chain mechanism
to synchronize prices. This suggests that further analysis into how decentralized applications
interact with the consensus mechanisms and replicated state machines they are run on is
necessary for providing realistic safety guarantees.

References

[AC20] Guillermo Angeris and Tarun Chitra. Improved Price Oracles: Constant Func-
tion Market Makers. In Proceedings of the 2nd ACM Conference on Advances in
Financial Technologies, pages 80–91, New York NY USA, October 2020. ACM.

[AEC20] Guillermo Angeris, Alex Evans, and Tarun Chitra. When does the tail wag the
dog? curvature and market making. arXiv preprint arXiv:2012.08040, 2020.

[AEC21a] Guillermo Angeris, Alex Evans, and Tarun Chitra. A note on privacy in constant
function market makers. arXiv preprint arXiv:2103.01193, 2021.

[AEC21b] Guillermo Angeris, Alex Evans, and Tarun Chitra. Replicating market makers.
arXiv preprint arXiv:2103.14769, 2021.

[AEC21c] Guillermo Angeris, Alex Evans, and Tarun Chitra. Replicating monotonic payoffs
without collateral. 2021.

[AZS+21a] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robin-
son. Uniswap v3 core. 2021.

[AZS+21b] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robin-
son. Uniswap v3 core. Technical report, Tech. rep., Uniswap, 2021.

9

[Cla21] Joseph Clark. The replicating portfolio of a constant product market with
bounded liquidity. Available at SSRN, 2021.

[CMN19] Ştefan Cobzaş, Radu Miculescu, and Adriana Nicolae. Lipschitz functions, vol-
ume 2241. Springer, 2019.

[def] Defi dashboard.

[FL08] Jonathan Field and Jeremy Large. Pro-rata matching and one-tick futures mar-
kets. Technical report, CFS Working Paper, 2008.

[FP91] Klaus-Jürgen Förster and Knut Petras. Error estimates in gaussian quadra-
ture for functions of bounded variation. SIAM journal on numerical analysis,
28(3):880–889, 1991.

[Fri21] Robin Fritsch. Concentrated liquidity in automated market makers. arXiv
preprint arXiv:2110.01368, 2021.

[GP15] Fabien Guilbaud and Huyên Pham. Optimal high-frequency trading in a pro rata
microstructure with predictive information. Mathematical Finance, 25(3):545–
575, 2015.

[Kov] Eduard Kovacs. U.s. government asks victims of 2017 etherdelta hack to come
forward.

[NRMP21] Michael Neuder, Rithvik Rao, Daniel J Moroz, and David C Parkes. Strategic
liquidity provision in uniswap v3. arXiv preprint arXiv:2106.12033, 2021.

[Shu] Camomile Shumba. Solana says it is back up and running after a surge in
transactions caused the network to crash the day before.

[Yak18] Anatoly Yakovenko. Solana: A new architecture for a high performance
blockchain v0. 8.13. Whitepaper, 2018.

[ZCP18] Yi Zhang, Xiaohong Chen, and Daejun Park. Formal specification of constant
product (xy=k) market maker model and implementation. 2018.

A Market Maker Liveness

Recall that a decentralized consensus protocol is defined to satisfy liveness if the network
eventually processes all transactions submitted to the network. Liveness guarantees are
contingent on various assumptions about network quality, with the three main assumptions
being synchrony, partial synchrony, and asynchrony. If we assume there is a minimum time
resolution that all nodes can measure (which is usually enforced to be a slot or block via
cryptographic means), synchrony assumes that all messages sent by users are received by
honest nodes within a single block or slot. On the other hand, partial synchrony assumes

10

that there exists a finite value τ > 0 such that all nodes receive all messages sent to the
network within τ blocks or slots. Partial synchrony can be subdivided into two further
categories by requiring either all nodes to know the uniform upper bound τ or for it to only
be known to be finite. Finally, asynchrony assumes that there is an no bound on the time
that it takes for nodes can receive messages.

We focus on making an analogue of partial synchrony for decentralized exchange mechan-
sism, both CFMMs and order books. Our definition specializes the traditional decentralized
consensus definition to be liquidity aware. In particular, a decentralized trading mechanism
can only achieve liveness up to some function of the liquidity held on the exchange. More-
over, the atomicity of how trades are executed is a crucial component to capture in any
definition of liveness. Order books are generically non-atomic: if there are n resting limit
orders on an order book and an aggressive trade crosses with Ω(n) orders, then the order
book has to write Ω(n) state to the blockchain. On the other hand, when a CFMM receives
an order of size ∆, provided that ∆ < R, where R is the CFMMs reserves or liquidity, then
it will always execute the trade in O(1) time (relative to R). This distinction plays a big role
on blockchains, where there is a scarcity of slots for a transaction to be executed within.

First, we will formalize the state variables contained within CFMMs and order books.
For CFMMs, this is relatively straightforward:

1. ϕ : R2 → R: Trading function that ensures an invariant is kept constant before and
after a trade

2. R ∈ R2: Reserves or liquidity at each time step

For order books, we have two main functionalities that are more complex than their CFMM
counterparts:

1. BookDepth(s): Total resting liquidity on side s ∈ {buy, sell}.

2. NumOrders(s): Total number of resting passive orders on side s

A CFMM order O is defined as a pair Q = (∆, η) ∈ R × [0, 1], where ∆ is the desired
quantity to be bought or sold and η is the slippage limit. Suppose that we have a CFMM
that is initially at reserve R0 and has price impact function g(∆, R0). We say that a trade
O is valid if

|g(∆, R0)− g(0, R0)|
g(0, R0)

≤ η

On the other hand, an order book order OCLOB = (∆, s) is simply a sided quantity and
executes if ∆ < BookDepth(s). Note that BookDepth(s) is dynamic (e.g. market makers will
constantly add, cancel, and modify resting limit orders) and as such, is significantly harder
to compute than g(∆, R0).

Our goal is to unify a notion of atomicity (given liquidity constraints) for these two
mechanisms. Given a notion of atomicity, it will be easy to extend to a notion of liveness
that resembles what one sees in traditional consensus mechanisms. The main parameters for
computing atomicity are:

11

• Nmax: The maximum number of trades that can be executed in a block

• L: The liquidity of the market making mechanism (a simple function of either BookDepth(s)
or R)

• n(s): Number of resting orders on a side s, where n(s) = 1 for all CFMMs (since the
liquidity pool can be viewed as a single buy or sell order)

We are now ready to define (k,L)-atomicity:

Definition 1. A market making mechanism M is (k,L)-atomic if ∀∆ < L it at most k
transactions to process ∆, regardless of n(s) provided that L > L

One sample construction of a (k,L)-atomic mechanism is an order book that has the
following properties:

1. Limit orders must have size ≥ dL
k
e

2. If the mempool has passive and active orders, active orders are executed before any
state change to passive orders (cancels, adds, modifies).

Note that the second condition ensures that BookDepth(s) > ∆ provided that ∆ is less than
the previous known book depth (as market makers cannot cancel in front of a big order).
The less than k transactions condition is guaranteed by the size of the order, since it can
only take k time steps to process the maximum size order.

Using this definition, a CFMM with reserves R is (1, (1− ε)R)-atomic, whereas an order
book is (NumOrders(s),BookDepth(s))-atomic on each side. Note that the reason for the
(1 − ε) factor is because any CFMM with unbounded support cannot empty its reserves
on a single trade. CFMMs with bounded support (often called “concentrated liquidity” in
cryptocurrency parlance) will achieve (1, R)-atomicity provided that the trade is less than
the liquidity over the bounded range. Order book’s atomicity clearly fluctuates with order
size and resting liquidity and also has a notion of execution time that fluctuations (unlike
CFMMs).

Properties of Atomicity. From the above definition, it is clear that if a mechanism M
is (k,L)-atomic for some k > 0 then it is also (k′,L)-atomic for any k′ > k. This implies
that for a fixed amount of liquidity L, there exists a minimum

k∗M(L) = min{k ≥ 1 :M is (k,L)-atomic}

such thatM is (k∗(L),L) atomic. Similarly, a (k,L)-atomic mechanism is (k,L′)-atomic for
any L′ < L. This implies that for fixed k ≥ 1, there is a maximum liquidity

L∗M(k) = max{L > 0 :M is (k,L)-atomic}

that can be achieved for a fixed k. For brevity, we will elide the subscriptM when it is clear
from context. For both k∗ and L∗, we define them to be infinite if there exists no value of k
or L, respectively, that is (k,L)-atomic

12

Given that CFMMs with bounded support can be composed — e.g.L1 units of liquidity
between prices [a, b) and L2 units of liquidity between prices [b, c)) — it is natural to inquire
about how atomicity composes. Suppose that M consists of a (k1,L1)-atomic pool and a
(k2,L2) atomic pool. Consider a trade of size ∆ ∈ (L1,L1 + L2). Processing such a trade
will take at least max(k1(L1), k2(L2) transactions, since we take at least ki transactions to
trade against all of the liqudity in pool 1 or pool 2. The remaining trade size, ∆ − L1 or
∆−L2 is executed against a (k2,L2)-atomic or (k1,L1)-atomic pool, respectively. Therefore,
we have

k∗(L1 + L2) ≥ k1(L1) + k2(L2) ≥ k∗(L1) + k∗(L2)

— that is, k∗ is superadditive in its second argument. Similarly, we can show that L∗(M, k1+
k2) is subadditive in its second argument.

This illustrates that composition of atomic operations is at least superadditive. Superad-
ditivity implies that concentrated liquidity pools make a trade-off: the more pools that are
needed to service a fixed amount of liquidity, the more transactions are necessary to process
larger trades. In Uniswap V3, this is more clearly depicted by the fact that crossing a tick
boundary requires more transactions than doing two independent trades at separate ticks.

The opposing superadditivity and subadditivity properties of k∗ and L∗ suggests a saddle
point algorithm for trading off liquidity versus liveness:

• Start with an initial liquidity level L0

• Compute an optimal atomicity k̂i = k∗(Li−1)

• Compute an optimal liquidity L̂i = L∗(ki)

After some number of rounds R, the hope is that the sequence converges in the sense that
∀ε > 0,∃r > R such that k̂r+1 = k̂r and |Lr − Lr+1| < ε. The output of this algorithm will
(hopefully) be a sort of analogue of a Nash equilibria: changing either k or L will not result
in an improvement in atomicity.

The precise value or objective function that is constructed depends on the market making
mechanism. For instance, for unbounded support CFMMs, we have (1, (1− ε)R)-atomicity,
which cannot be improved by this procedure as k is minimize and L is ε-close to a maximum.
On the other hand, CFMMs with n pools where each pool is (1, Ri)-atomic will start off with
k∗ ≥ n and L0 =

∑
iRi and have a potentially large rebalance across pools as n→∞. Order

books will behave similarly, as they start off as (NumOrders(s),BookDepth(s))-atomic.

Liveness. We can now define liveness in terms of atomicity:

Definition 2. A market making mechanismM achieves L-liveness if k∗(L) < Nmax

Note that a non-concentrated CFMM with reserves R achieves (1− ε)R-liveness, whereas
order books and concentrated liquidity CFMMs can achieve much lower liveness than BookDepth(s).
By locking up liquidity (e.g. such as in our sample construction), an order book (or a hybrid
order book and CFMM) mechanism can improve its level of liquidity liveness.

13

Moreover, using this definition, we can use (6) to provide a more precise bound on k for
order books. In particular, given a fixed liquidity level L, we need O(p−p0) pools (e.g. O(1

p
)

tick size) to achieve low quadrature error. This implies that k∗(L) = Ω(p − p0), where p is
an upper bound on the maximum price impact expected. Note that if p−p0

Nmax
� 1 then we

effectively cannot service demand to that price level given existing block size.

14

