
Fast Reciprocal Collision Avoidance Under
Measurement Uncertainty

Guillermo Angeris∗

angeris@stanford.edu

Kunal Shah∗

k2shah@stanford.edu

Mac Schwager

schwager@stanford.edu

May 2019

Abstract

We present a fully distributed collision avoidance algorithm based on convex op-
timization for a team of mobile robots. This method addresses the practical case in
which agents sense each other via measurements from noisy on-board sensors with no
inter-agent communication. Under some mild conditions, we provide guarantees on
mutual collision avoidance for a broad class of policies including the one presented.
Additionally, we provide numerical examples of computational performance and show
that, in both 2D and 3D simulations, all agents avoid each other and reach their desired
goals in spite of their uncertainty about the locations of other agents.

1 Introduction

Reliable collision avoidance is quickly becoming a mainstay requirement of any scalable
mobile robotics system. As robots continue to be deployed around humans, assurances of
safety become more critical, especially in high traffic areas such as factory floors and hospital
corridors. We present an on-line, distributed collision avoidance algorithm based on convex
optimization that generates robot controls to evade moving obstacles sensed using noisy on-
board sensors. We also show that a general class of controllers, including the one presented,
guarantees mutual collision avoidance, provided that all robots involved use this policy.

We allow for each robot to have its own estimate of the relative positions of other robots,
which may be inconsistent with the other robots’ estimates. To conservatively manage
uncertainty in this model, we assume that each robot keeps an uncertainty set (e.g., unions
and intersections of ellipsoids) that contain other robots’ possible locations. We assume each
robot knows its own position exactly and updates its estimates of the other robots via noisy
on-board sensors such as a camera or LIDAR.

∗These authors contributed equally to this work.

1



The policy is distributed in the sense that each robot only requires an estimate of the
relative positions of the other robots. In other words, robots do not need to communicate
their position or explicitly coordinate actions with nearby robots. Each agent then uses
these position estimates to find a safe-reachable set which is characterized by a generalized
Voronoi partition. Our algorithm computes a projection onto this set, which we show reduces
to an efficiently solvable convex optimization problem. Our method is amenable to fast
convex optimization solvers, resulting in computations times of approximately 18 ms for 100
obstacles in 3D, including setup and solution time. Furthermore, we prove that if each agent
uses this policy then mutual collision avoidance is guaranteed.

This paper is organized as follows. The remainder of this section discusses related work.
Section 2 formulates the mutual avoidance problem and gives the necessary mathematical
background on generalized Voronoi partitioning. Section 3 describes the collision-avoidance
algorithm and provides a collision avoidance guarantee. Section 4 formalizes the projection
problem and describes the resulting convex optimization for ellipsoidal uncertainties in detail.
Finally, section 5 shows our method’s computational performance. Additionally, we show in
2D and 3D simulations that all agents avoid each other and navigate to their goal locations
despite their positional uncertainty of other agents.

1.1 Related Work

The most closely related methods for fully distributed collision avoidance in the literature are
the velocity obstacle (VO) methods, which can be used for a variety of collision avoidance
strategies. These methods work by extrapolating the next position of an obstacle using
its current velocity. One of the most common tools used for mutual collision avoidance is
the Reciprocal Velocity Obstacles (RVO) [VdBLM08, VdBGLM11, VdBGS+16] method in
which each agent solves a linear program to find its next step. The Buffered Voronoi Cell
(BVC) [ZWBS17] method provides similar avoidance guarantees but does not require the
ego agent to know other agents’ velocities, which can be difficult to estimate accurately. The
BVC algorithm opts instead for defining a given distance margin to compute safe paths. BVC
methods have been coupled with other decentralized path planing tools [ŞHA19] in order
to successfully navigate more cluttered environments, but require that the other agents’
positions are known exactly.

While both VO and BVC methods scale very well to many (more than 100) agents,
they also require perfect state information of other agents’ positions (BVC), or positions
and velocities (RVO). In many practical cases, high accuracy state information, especially
velocity, may not be accessible as agents are estimating the position of the same objects
they are trying to avoid. Extensions to VO that account for uncertainty have been studied
under bounded [CHTM12] and unbounded [GSK+17] localization uncertainties by utilizing
chance constraints. While these have been extended to decentralized methods [ZA19], they
assume constant velocity of the obstacles at plan time. Combined Voronoi partitioning and
estimation methods have been studied for mult-agent path planing tasks [BCH14], but still
require communication to build an estimate via consensus. In contrast, our method does
not require any communication or velocity state information, nor does it require the true

2



position of the other agents. Instead, the algorithm uses only an estimate of the current
position of the nearby agents and their reachable set within some time horizon.

Our algorithm takes a nominal desired trajectory or goal point (which can come from
any source, much like [VdBLM08, ZWBS17]), and returns a safe next step for an agent to
take while accounting for both the uncertainty and the physical extent of the other agents
in the vicinity. The focus of this work is on fast, on-board refinement rather than total path
planning. More specifically, while the algorithm presented could be used to reach a far away
goal point, it is likely more useful as a small-to-medium scale planner for reaching waypoints
in a larger, centrally or locally planned, trajectory.

Similarly, single agent path planners such as A* or rapidly-exploring random trees (RRT)
can be applied to the multi-agent case, but the solution times grow rapidly due to the
exploding size of the joint state space. For example, graph-search methods can be partially
decoupled [WC11] to better scale for larger multi-agent systems, but can explore the entire
joint state-space in the worst case. Fast Marching Tree (FMT) methods [JSCP15] are similar
to RRTs in that they dynamically build a graph via sampling. But, while FMT methods have
better performance in higher dimensional systems, they still require the paths to be centrally
calculated. Using barrier functions [MJWP16], A* can also be used in dense environments
for decentralized multi-agent planning, but require the true position of all the other agents.
On the other hand, while all of these methods require global knowledge and large searches
over a discrete set, they can be used as waypoint generators that feed into our method—for
use, e.g., in cluttered environments.

Optimization methods that use sequential convex programming (SCP) [SHL+13, ASD12,
MCH14] have also been studied for multi-agent path planning; however, these algorithms
are still centralized and may exhibit slow convergence, making them unreliable for on-line
planning. For some systems, these methods can be partially decoupled [CCH15], reducing
computation time at the cost of potentially returning infeasible paths. Our method, in
comparison, is fully decentralized and produces an efficient convex program for each agent.
The solution of this program is a safe waypoint for the agent, which, unlike SCP methods,
requires no further refinment.

2 Problem Formulation

Consider a group of N dynamic agents. Let xi(t) ∈ Rn be the position of agent i (also
referred to as the “ego agent”) for i = 1, . . . , N at time t = 1, . . . , T , where each agent
satisfies single integrator dynamics,

xi(t+ 1) = xi(t) + ui(t), i = 1, . . . , N, t = 1, . . . , T, (1)

with control ui(t) ∈ Rn and ‖ui(t)‖2 ≤ umax. In addition, every agent i will maintain a
set-based estimate of the location of every other agent j 6= i as a set E ji (t), such that

xj(t) ∈ E ji (t), i = 1, . . . , N, t = 1, . . . , T. (2)

3



Figure 1: Generalized Voronoi cells of each (blue, red, green) agent’s position (circle) with goal
point (square) and safe projected goal point (triangle). Each agent uses an ellipsoidal estimate
(colored ellipses) of each other agent’s position to generate its own cell.

In other words, the true position of agent j at time t must always be inside the noisy estimate
E ji (t) maintained by agent i. In practice, this set can be obtained from a high probability
confidence ellipsoid of a Bayesian filter or from a set-membership filter [BR71]. We do
not restrict the size of this uncertainty region, though we note that large uncertainties will
restrict an agent’s possible actions.

Let the safe-reachable set Si(t) be the generalized Voronoi cell [Wat81, HZZ+12, SS19]
generated between agent i’s current position, xi(t), and the set of estimates, E ji , that agent
i has of every agent j at time t. That is,

Si(t) =
{
z
∣∣ ‖z − xi(t)‖2 ≤ ‖z − E ji (t)‖2 ∀j = 1, . . . , N, j 6= i

}
(3)

where ‖z − E ji (t)‖2 is the distance-to-set metric ‖z − E ji (t)‖2 = infy∈Eji (t)
‖z − y‖2.

More explicitly, Si(t) is the set of points which lie closer to agent i than to any possible
position of agent j within its uncertainty set E ji . This has a natural interpretation in the
case where all agents share the same single-integrator dynamics (though this condition is
not necessary for the algorithm, in general): Si(t) is the set of all points which agent i is
guaranteed to reach from its current position before any other agent. We emphasize that
since each agent will often maintain different estimates of the positions of other agents,
the sets Si(t) generally do not form a partition of Rn, as the union ∪iSi(t) does not equal
the entire space. Figure 1 shows the generalized Voronoi cell boundaries in an example
simulation: each agent is shown with the estimates it has of other agents, along with the
agent’s goal position and projected goal position. We also note that Si(t) is a relatively

4



Figure 2: Projection (blue triangle) of a goal point (blue square) onto a generalized Voronoi region
(cyan region). The boundary (red curve) is equidistant from the agent’s position (blue point) and
the closest point inside the ellipsoidal estimate of the obstacle (red ellipse).

conservative estimate of the set of collision-free points. Let

Ei(t) =
N⋃
j=1
j 6=i

E ji (t),

that is, Ei(t) is the set of all points which could potentially include another agent—from the
perspective of agent i—then the safe-reachable set satisfies

Si(t) ⊆ Rn \ Ei(t).

Additionally, we note that each set Si(t) is the intersection of an infinite number of half-
spaces since (3) can be rewritten as

Si(t) =
⋂

y∈Ei(t)

{z | ‖z − xi‖2 ≤ ‖z − y‖2} , (4)

which implies that Si(t) is a convex set [BV04, §2.3.1]. This means that a projection of an
arbitrary point (such as a goal destination or way-point) onto this set can be formulated as a
(potentially infinitely large) convex optimization problem. In the next section, we describe an
algorithm which uses these projections and prove collision-free guarantees for this algorithm,
while, in the following section, we show how these projections can be efficiently computed.

Normally, uncertainties are defined for points in space (i.e., the centers of robots in R3);
however, without physical extent, collision is a measure zero event. To guarantee collision
avoidance, we must account for both the uncertainty and the physical size of other agents.
Assuming that the robot’s physical extent can be represented by an ellipsoid, we can combine
the physical size ellipsoid with the uncertainty ellipsoid such that their Minkowski sum is

5



contained inside a new bounding ellipsoid, Ē . In other words, we seek an ellipsoid Ē with
Ē ⊇ Eestimate ⊕ Esize. In general, we can analytically find a small ellipsoid Ē which satisfies
this propety by solving a minimum trace optimization problem (see [LZW16]). Additionally,
using ellipsoidal margins allows us to potentially account for more complicated effects that
could not be reasonably represented by spherical margins. For example, [PHAS17] uses
ellipsoids elongated in the z-axis to generate keepout zones above and below quadrotors,
which account for the downwash effect of the propellers.

3 Collision Avoidance

We present an algorithm which uses the projections described in section 2 to reach a given
goal. We then present a general proof of collision avoidance guarantees for a class of algo-
rithms including the one presented in [ZWBS17] and Algorithm 1 (below), along with its
natural extensions.

3.1 General Algorithm

To simplify notation, let Ri(t) be the reachable set of positions of each agent i at time t. We
note that, in our case, Ri(t) is the intersection of the closed `2-ball with radius umax and the
generalized Voronoi cell of agent i at time t. We also note that this is a compact set which
always contains 0 if it is not empty.

Let E ji (t) be the uncertainty ellipsoid with nonzero volume that agent i has of agent j 6= i
at time t and let Pi(xi, Ei, t) be the projection of agent i’s goal into the intersection of its
generalized Voronoi cell and its reachable set at time t. As a technical requirement, we will
require that agent j’s true position lies in the interior of E ji (t). Since this projection can fail
(e.g., when agent i’s uncertainty of agent j’s position is large enough to include the position
of agent i), we allow the projection function to return either a point in Rn, or a symbol, ¬,
which indicates that the projection failed—i.e., there is no safe point to move to.

Algorithm 1 General projection algorithm

i← current agent.
xi(1)← initial position of agent i.
for t = 1, . . . , T do
q ← Pi(xi, Ei, t)
if q = ¬ then
xi(t+ 1)← xi(t)

else if q 6= ¬ then
xi(t+ 1)← q

end if
end for

6



Algorithm 1 states that, if the projection fails, the agent does not move from its current
position; otherwise, the agent moves towards the next projection.

Theorem 1. Algorithm 1 is collision free, assuming all agents start from a collision free
configuration.

Proof. First, we note the following properties of the projection function defined above. If
the function yields a point in Rn (and not ¬) then the following statements are satisfied,

Pi(xi, Ei, t) ∈ xi(t) +Ri(t), t = 1, . . . , T

Pi(xi, Ei, t) 6∈ xj(t) +Rj(t), t = 1, . . . , T, j = 1, . . . , N, j 6= i,
(5)

where the sum of a vector v ∈ Rn and a set M ⊆ Rn is defined as v+M = {v+w | w ∈M}.
In other words, condition (5) requires that the projection, if it returns a point, must (a)
return a point which is in the agent’s reachable set, and (b) cannot return a point which
could lie in region of another agent’s reachable set, since agent i does not know where agent
j is headed.

The first statement (a) comes from the fact that, by definition, the projection function
gives a point in the intersection of the reachable set and the generalized Voronoi cell. The
second (b) comes from the fact that the set which we project into contains only the points
which are reachable by agent i before they are by agent j, and agent j maintains an uncer-
tainty ellipsoid of agent i’s position which includes agent i’s true position. This implies that
the reachable set of agent j at time t cannot include the projection of agent i at time t.

Now, assume that all agents start a positive distance apart at time t = 1 and consider
any two agents i 6= j. Recall that our projection function Pi(xi, Ei, t) returns a point or
returns ¬. Suppose that a point is returned, then, by definition of algorithm 1 and by (5),
we know that

xi(t+ 1) = Pi(xi, Ei, t) 6∈ xj(t) +Rj,

so xi(t+ 1) must be a positive distance from xj(t) +Rj(t), by compactness of Rj(t). Since,
by definition, xj(t) + Rj(t) contains the point xj(t + 1), then xi(t + 1) is always a positive
distance away from xj(t+ 1).

Now, assume that Pi(xi, Ei, t) returns ¬, then, for the other agent, Pj(xj, Ej, t) either
returns ¬ (in which case no collision happens, since neither agent has moved, by definition
of algorithm 1) or Pj returns a point which satisfies

xj(t+ 1) = Pj(xj, Ej, t) 6∈ xi(t) +Ri(t).

But, since agent i has not moved, xi(t + 1) = xi(t) ∈ xi(t) + Ri(t) (since 0 ∈ Ri(t), by
definition), so xj(t + 1) is a positive distance away from xi(t + 1), again by compactness of
Ri(t).

Since this is true for any two agents, then all agents stay a positive distance apart from
each other for each time t = 1, . . . , T , and no collision happens.

7



3.2 Generalizations and discussion

While the proof above is presented only in the context of algorithm 1 with the projection
function and reachable sets specified in §2, the proof is almost immediately generalizable to
many other projection functions and reachable sets. We present a few of these generalizations
below.

Proof requirements. In the proof of theorem 1, we only used the following three facts:
(a) the projection function satisfies (5), (b) that Ri(t) was compact for each agent i at each
time t, and (c) that 0 is in the reachable set (0 ∈ Ri(t)). This means that any set of agents
and projection functions that satisfy the above conditions are immediately guaranteed to
be collision free, if they use algorithm 1. There are many such projection functions, for
example the trivial function (which always returns ¬) and functions which are potentially
very complicated and depend on the histories of the uncertainties, but all cases guarantee
collision avoidance so long as these conditions are satisfied.

Minimum distance. The minimum distance between agents depends on the aggressive-
ness of the projection function—in the sense that the proof above only guarantees a non-zero
(but arbitrarily small) separation. We can give slightly better bounds by under-projecting
to ensure that, for every i 6= j and time t,

‖Pi(xi, Ei, t)− (xj(t) +Rj(t))‖2 ≥ ε > 0. (6)

This guarantees that every pair of agents will have a separation of at least ε.
It is sometimes easy to generate the under-projection condition in (6). For example, this

is possible in the case where Rj(t) is a convex set1 and {Pj} is any set of valid projection
functions. To generate this, we choose the q of algorithm 1 to be a convex combination of
the current position and the projected position which satisfies the inequality above. This
ensures that every pair of agents is at least ε-separated—assuming all agents start with at
least ε separation at time t = 1—for all t = 1, . . . , T .

Uncertainties. The sets E ji (t) for t = 1, . . . , T and j = 1, . . . , N with j 6= i only play a role
as the arguments to Pi, but there is no requirement that these measurements be accurate or
even bounded in any sense. It is possible for one agent to temporarily have large uncertainty
about the positions of all other agents (e.g., in the case of GPS loss) before gaining a
more accurate measurement and continuing to its objective. Of course, the usefulness of
the projection function will heavily depend on the quality of these projections, but we are
guaranteed to be collision free at every point in time, independent of these assumptions, so
long as condition (5) is satisfied.

1More generally, a star-shaped domain around 0 ∈ Rj(t) would suffice.

8



Relaxing the reachability condition. In the proof of theorem 1 we assume that the
current position is always a reachable state for agent i (i.e., that 0 ∈ Ri(t)). While this is the
case in single-integrator dynamics, for example, it is not the case in general. It is possible to
weaken this assumption slightly by ensuring that the agent can stop within some ε-ball, such
that some point in xi(t)+εB is always reachable (where ε > 0 and B = {x ∈ Rn | ‖x‖2 ≤ 1})
from state xi(t), but the assumptions on the projection functions, Pi, must be strengthened
considerably from the general ones given in condition (5).

Asymmetric dynamics. It is rarely the case that the dynamics of the agents in question
are single-integrator dynamics with the same maximal input for all agents, as we assumed
at the beginning of this proof. In the case that the dynamics are asymmetric among agents,
we can guarantee condition (5) with the projections presented in this section by simply
expanding the uncertainty ellipsoid by a margin which includes the reachability of the other
agents. That is, we can replace the uncertainty ellipsoid that agent i has of agent j, originally
given by E ji (t) at time t with E ji (t)⊕Rj(t) (or any other outer envelope of this set). Using this
new uncertainty to generate a safe Voronoi region and using its corresponding projection, as
given in §2, is then guaranteed to be collision free.

4 Projecting onto Generalized Voronoi Cells

In this section, we describe a solution to the problem of efficiently projecting a point into a
generalized Voronoi region.

First, we construct a program which is equivalent to finding a projection into a convex
set of the form (4), but may not be easy to solve as its constraint is not representable
in any standard form. We then use Lagrange duality to construct a convex constraint
that is at least as strict as the original and use strong duality to show that this constraint
is equivalent to the original problem. Finally, we provide a conic problem for the case
of ellipsoid generated Voronoi regions with the constraint explicitly parametrized by the
ellipsoid parameters (µ,Σ). We also show that, for the ellipsoidal case, the constraint is
represented by a sum of quadratic-over-linear terms, implying that the convex program is a
second order cone program (SOCP) and can therefore be solved quickly by embedded solvers.

4.1 Problem Statement

As in [ZWBS17], in order to execute the collision-avoidance strategy, each agent must project
its goal point onto its safe-reachable set as defined in (4). This problem is always convex
since the Voronoi region is generated by an (arbitrary) intersection of hyperplanes [BV04,
§2.3.1], which always results in a convex set.

Consider the case in which the Voronoi cell is generated by a point x and a single convex
set, E , defined by

E = {y | f(y) ≤ 0},

9



where f : Rn → Rm is a convex function and the inequality is taken elementwise. This
allows us to write the problem as finding a projection point x which solves

minimize
x

‖x− xg‖22
subject to x ∈ V (xc, E)

(7)

where xc is the current position of the agent, xg is the goal, and V (xc, E) is the agent’s
generalized Voronoi region,

V (xc, E) = {z | ‖z − xc‖2 ≤ inf
y∈E
‖z − y‖2}.

For some special cases of E , such as a circle or sphere, the constraint’s infimum can be found
analytically. However, this may not be possible for arbitrary sets. For example, in the case
where E is an ellipsoid, no analytical distance function has been found [UG18].

Using the definitions of E and V (xc, E), we can write (7) as

minimize
x

‖x− xg‖22
subject to ‖xc‖22 − 2xTxc ≤ inf

f(y)≤0

(
‖y‖22 − 2xTy

)
.

(8)

This is the problem formulation we will use throughout. Figure 2 gives an illustration of the
projection problem.

4.2 Lagrange Duality

At the moment, it is not obvious how to represent the the constraint given in problem (8)
in a standard or easy-to-solve form.

If we can find a lower bound to the right hand side of the constraint in problem (8) which
makes the resulting problem easy to solve, then we can find a feasible (i.e., safe) point, x,
which may not be optimal. More concretely, suppose we have a function ĝ which satisfies,
for every x,

ĝ(x) ≤ inf
f(y)≤0

(
‖y‖22 − 2xTy

)
,

then any x which satisfies
‖xc‖22 − 2xTxc ≤ ĝ(x),

also satisfies
‖xc‖22 − 2xTxc ≤ inf

f(y)≤0

(
‖y‖22 − 2xTy

)
,

making x a feasible point for problem (8). One standard way of forming such a lower bound
is via Lagrange duality [BV04, §5.1]. The Lagrangian of the infimum in (8)

L(y, x, λ) = ‖y‖22 − 2xTy + λTf(y),

10



with λ ∈ Rm and λ ≥ 0. This gives us the Lagrange dual function

g(x, λ) = inf
y
L(y, x, λ) = inf

y

(
‖y‖22 − 2xTy + λTf(y)

)
. (9)

By weak duality [BV04, §5.1.3], for every λ ≥ 0 and each x,

g(x, λ) ≤ inf
f(y)≤0

(
‖y‖22 − 2xTy

)
,

as required.
Additionally, since the dual function g is jointly concave in both λ and x, the resulting

inequality constraint is convex,

‖xc‖22 − 2xTxc ≤ g(x, λ).

Strong duality. Due to the lower bound property of g, the optimization problem,

minimize
x, λ

‖x− xg‖22

subject to ‖xc‖22 − 2xTxc ≤ g(x, λ)

λ ≥ 0,

(10)

is potentially more restrictive than the original and is thus an upper bound on the optimal
objective of problem (8). Due to strong duality holding in almost all cases of interest (i.e.,
all cases where the set E has nonempty interior), we will see that problems (10) and (8) are
equivalent which implies that every optimal solution to problem (10) is an optimal solution
to problem (8); in other words, the relaxation provided is tight.

In particular, Slater’s condition holds for any convex set E with non-empty interior (in
three dimensions, this would be any convex set with nonzero volume). Since Slater’s con-
dition implies strong duality [BV04, §5.3.2], then for each x, there exists some λ? ≥ 0 such
that

g(x, λ?) = inf
f(y)≤0

(
‖y‖22 − 2xTy

)
,

which means that a solution to problem (10) is always a solution to problem (8).
Given an arbitrary convex function f , it is unclear if the associated function g defined

by (9) has an analytic form or is even easy to evaluate. In the following section, we derive
an analytic form for g in the case that E is an ellipsoid. In the appendix, we also derive an
analytic form for g for polyhedral sets. We also show that it is possible to construct more
complicated sets from the union and intersection of these ellipsoidal and polyhedral ‘atoms’
allowing the user to specify complicated, non-convex sets as the uncertainty regions of other
agents or obstacles.

11



4.3 Constraints for Regions Generated by Ellipsoids

If the set E is specified by a convex quadratic constraint, as in the case of ellipsoids, then
the set E can be written as,

E = {y | f(y) ≤ 0} = {y | (y − µ)TΣ−1(y − µ) ≤ 1}

with µ ∈ Rn and Σ ∈ Sn++, the positive definite matrix cone, representing the center and
shape of the uncertainty, respectively. Note that the minimum of the convex quadratic,

yTAy − 2bTy,

with A positive definite is given by

inf
y

(
yTAy − 2bTy

)
= −bTA−1b.

Here, y∗ = A−1b, is found by setting the gradient to zero—this is necessary and sufficient by
convexity and differentiability. The dual function is then,

g(x, λ) = inf
y

(
‖y‖22 − 2xTy + λ((y − µ)TΣ−1(y − µ)− 1)

)
= inf

y

(
yT (λΣ−1 + I)y − 2(x+ λΣ−1µ)Ty + λ

(
µTΣ−1µ− 1

))
= −(x+ λΣ−1µ)T (λΣ−1 + I)−1(x+ λΣ−1µ) + λ(µTΣ−1µ− 1).

Though the function g can immediately be written in standard semidefinite program (SDP)
form via the Schur complement, it is possible to convert it into a second-order cone constraint
form, which is usually more amenable to embedded solvers (e.g., ECOS [DCB13]).

First, since Σ is positive definite, it has an eigendecomposition Σ = UDUT , where
U ∈ Rn×n is an orthogonal matrix that satisfies UUT = UTU = I and D ∈ Rn×n is a
diagonal matrix with positive entries. Using the fact that Σ−1 = UD−1UT , we can write

(λΣ−1 + I)−1 = (λUD−1UT + UUT )−1 = U(λD−1 + I)−1UT ,

which gives,

g(x, λ) = −(UT (x+ λµ̃))T (D−1 + λI)−1(UT (x+ λµ̃)) + λ(µ̃TΣµ̃− 1)

= −
n∑
i=1

(uTi x+ λuTi µ̃)2

D−1ii + λ
+ λ(µ̃TΣµ̃− 1),

(11)

where µ̃ = Σ−1µ and ui is the ith column of U . After substituting (11) into (8) we obtain
the following optimization problem,

minimize
x, λ

‖x− xg‖22

subject to ‖xc‖22 − 2xTxc +
n∑
i=1

(uTi x+ λuTi µ̃)2

D−1ii + λ
≤ λ(µ̃TΣµ̃− 1)

λ ≥ 0,

(12)

12



where Σ and µ̃ = Σ−1µ are given by the uncertainty of the other agent’s position, and xg

and xc are known by the ego agent (i.e., the agent solving the optimization problem).
As there is a standard approach for converting the sum of n quadratic-over-linear terms

into n second-order cone (SOC) constraints (e.g., see [LVBL98]) and an affine constraint,
this formulation can then be used directly with embedded SOCP solvers. It can also be
automatically converted to an SOCP by modeling languages such as CVXPY [AVDB18].

5 Simulation Results

5.1 Projection Implementation

To get an accurate estimate of the speed of the projection algorithm, the optimization prob-
lem outlined in (12) was implemented in the Julia language [BEKS17] using the JuMP math-
ematical programming language [DHL17] and solved using ECOS [DCB13]. 285 instances
of the problem were generated with 100 randomly generated ellipsoids in R3. Timing and
performance results for generating and solving the corresponding convex program can be
found in table 1. Figure 3 shows how the performance scales as the number of other agents
increases. All times reported are on a 2.9GHz 2015 dual-core MacBook Pro.

100 101 102 103

Number of obstacles

10−3

10−2

10−1

100

T
im

e
(s

)

Time vs. number of obstacles

5%

Mean

95%

Figure 3: Graph showing total time for gen-
erating and solving optimization problem (12)
as a function of the number of ellipsoids in the
problem when solved using the ECOS solver.
Note the logarithmic scales on both axes.

Time Total (GC %)

Minimum 13.20ms (00.00%)

Median 17.12ms (00.00%)

Mean 17.55ms (08.80%)

Maximum 36.77ms (10.59%)

Table 1: Table reporting times with garbage
collection (GC) precentage for building and
solving problems with 100 randomly gener-
ated 3D ellipsoids. Statistics are based on
285 instances and were obtained from the
BenchmarkTools.jl [CR16] package.

5.2 Trajectory Simulations

The projection algorithm was implemented in both 2D and 3D with a varying number of
agents.2 Each agent knows their position exactly and maintains a noisy estimate of other

2A video of the simulations can be found at https://youtu.be/oz-bMovG4ow.

13



Figure 4: Inter-agent distances RVO (left) and our method (right). The RVO simulation results
in inter-agent distances below the collision threshold (black line).

agents’ positions, with uncertainties represented as ellipsoids. This estimate is updated by
a set-membership based filter [BR71, LZW16, SS19], a variant of the Kalman filter. We
expand the uncertainty ellipsoid by a given margin to account for the robot’s physical size.
If this margin is also ellipsoidal then a small ellipsoid which contains the Minkowski sum of
the uncertainty ellipsoid and the margin can be found in closed form [LZW16, SS19]. This
new bounding ellipsoid is used in the projection algorithm to account for a user defined
margin, along with the uncertainty ellipsoid containing the noisy sensor information.

Figure 4 shows the minimum inter-agent distances for each agent in the simulation sce-
nario mentioned above. The collision threshold was set to .4m, twice the radius of the agents.
Although our method results in longer paths, it remains collision free, while RVO’s paths
result in collision.

Figure 5 shows six instances of a 3D simulation with 10 agents. The agents start at
the sides of a 10m × 10m × 10m cube and are constrained to a maximum speed of 6m/s
and a maximum measurement error set to 1.0m. The algorithm was run at 60Hz. The
agents, displayed as quadrotors, each have a bounding box of 0.45m × 0.45m × 0.2m and
an additional ellipsoidal margin with axis lengths of .3m in the x and y dimensions, and
1.2m in the z dimension. This margin effectively gives a buffer of 0.75m in the xy plane and
a large buffer of 1.3m in z. We assume non-spherical margins in this simulation since, in
the case of quadrotor flight, large margins in the z direction can prevent unwanted effects
due to downwash [PHAS17]. The minimum inter-agent distance during the simulation, as
measured from the centers of the agents, was 1.6m.

6 Closing Remarks
While cloud and edge computing has relieved many of the burdens distributed robotic sys-
tems encounter, network delays, disconnects, and other failures are still commonplace at
scale. Dependable and fast algorithms that can run onboard are, therefore, critical for any
certifiable system. In this work, we presented a scalable system that can work with simple or

14



t = 0 t = 60

t = 120 t = 180

t = 210 t = 232

Figure 5: Six time instances of a 3D simulation of 10 agents. Each agent adds an ellipsoidal
margin (shown) elongated in the z-axis to account for downwash affects.

complex, distributed or centralized high level planers to provide safe trajectories for a group
of agents. Under the assumptions stated, we showed that collision avoidance is guaranteed,
provided each agent follows this method. However, we observe practical collision avoidance
behavior even if only the ego agent follows this method. Computational performance results
and simulations provide evidence that this algorithm can potentially be used in safety-critical
applications for mobile robots with simple dynamics.

Future work will focus on creating a fast, easily extendable library for automatically
generating programs of the form of problem (12), by making use of the composition rules
presented in the appendix. We suspect that future support for warm starts and the ability to
change parameters without reconstructing the complete problem from scratch (as compared
to §5.1) would yield a substantial speed up in solution time. Additionally, we note that while
immediately attempting to use problem (12) in a Model Predictive Control (MPC) formalism
yields a nonconvex problem, we believe that there may be a approach to approximate solution
while retaining the feasibility properties assumed in (5). We also plan on incorporating a
global planner, which can handle static obstacles less conservatively than our algorithm, into
our trajectory planning pipeline.

15



Acknowledgements

This work was supported in part by the Ford-Stanford Alliance program, and by the DARPA
YFA award D18AP00064.

References

[ASD12] F. Augugliaro, A. P. Schoellig, and R. D’Andrea. Generation of collision-
free trajectories for a quadrocopter fleet: A sequential convex programming
approach. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1917–1922, Oct 2012.

[AVDB18] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A
rewriting system for convex optimization problems. Journal of Control and
Decision, 5(1):42–60, 2018.

[BCH14] S. Bandyopadhyay, S. Chung, and F. Y. Hadaegh. Probabilistic swarm guid-
ance using optimal transport. In 2014 IEEE Conference on Control Applica-
tions (CCA), pages 498–505, Oct 2014.

[BEKS17] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A
fresh approach to numerical computing. SIAM review, 59(1):65–98, 2017.

[BR71] D. Bertsekas and I. Rhodes. Recursive state estimation for a set-membership
description of uncertainty. IEEE Transactions on Automatic Control,
16(2):117–128, Apr 1971.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[CCH15] Yufan Chen, Mark Cutler, and Jonathan P How. Decoupled multiagent path
planning via incremental sequential convex programming. In 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 5954–5961.
IEEE, 2015.

[CHTM12] D. Claes, D. Hennes, K. Tuyls, and W. Meeussen. Collision avoidance under
bounded localization uncertainty. In 2012 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 1192–1198, Oct 2012.

[CR16] Jiahao Chen and Jarrett Revels. Robust benchmarking in noisy environments.
arXiv preprint arXiv:1608.04295, 2016.

[DCB13] Alexander Domahidi, Eric Chu, and Stephen Boyd. Ecos: An socp solver
for embedded systems. In 2013 European Control Conference (ECC), pages
3071–3076. IEEE, 2013.

16



[DHL17] Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A modeling language
for mathematical optimization. SIAM Review, 59(2):295–320, 2017.

[GSK+17] B. Gopalakrishnan, A. K. Singh, M. Kaushik, K. M. Krishna, and
D. Manocha. Prvo: Probabilistic reciprocal velocity obstacle for multi robot
navigation under uncertainty. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1089–1096, Sep. 2017.

[HZZ+12] Haomiao Huang, Zhengyuan Zhou, Wei Zhang, Jerry Ding, Dušan M Sti-
panovic, and Claire J Tomlin. Safe-reachable area cooperative pursuit. IEEE
Transactions on Robotics, 2012.

[JSCP15] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast
marching tree: A fast marching sampling-based method for optimal motion
planning in many dimensions. The International Journal of Robotics Research,
34(7):883–921, 2015.

[LVBL98] Miguel S. Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. Ap-
plications of second-order cone programming. Linear algebra and its applica-
tions, 284(1-3):193–228, 1998.

[LZW16] Yushuang Liu, Yan Zhao, and Falin Wu. Ellipsoidal state-bounding-based
set-membership estimation for linear system with unknown-but-bounded dis-
turbances. IET Control Theory & Applications, 10(4):431–442, feb 2016.

[MCH14] Daniel Morgan, Soon-Jo Chung, and Fred Y Hadaegh. Model predictive con-
trol of swarms of spacecraft using sequential convex programming. Journal of
Guidance, Control, and Dynamics, 37(6):1725–1740, 2014.

[MJWP16] X. Ma, Z. Jiao, Z. Wang, and D. Panagou. Decentralized prioritized motion
planning for multiple autonomous uavs in 3d polygonal obstacle environments.
In 2016 International Conference on Unmanned Aircraft Systems (ICUAS),
pages 292–300, June 2016.

[PHAS17] J. A. Preiss, W. Hönig, N. Ayanian, and G. S. Sukhatme. Downwash-aware
trajectory planning for large quadrotor teams. In 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 250–257,
Sep. 2017.

[ŞHA19] Baskın Şenbaşlar, Wolfgang Hönig, and Nora Ayanian. Robust trajectory
execution for multi-robot teams using distributed real-time replanning. In
Distributed Autonomous Robotic Systems, pages 167–181. Springer, 2019.

[SHL+13] John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow,
and Pieter Abbeel. Finding locally optimal, collision-free trajectories with
sequential convex optimization. In Robotics: science and systems, volume 9,
pages 1–10. Citeseer, 2013.

17



[SS19] Kunal Shah and Mac Schwager. Multi-agent cooperative pursuit-evasion
strategies under uncertainty. In Distributed Autonomous Robotic Systems,
pages 451–468. Springer, 2019.

[UG18] Alexei Yu Uteshev and Marina V Goncharova. Point-to-ellipse and point-to-
ellipsoid distance equation analysis. Journal of Computational and Applied
Mathematics, 328:232–251, 2018.

[VdBGLM11] Jur Van den Berg, Stephen Guy, Ming Lin, and Dinesh Manocha. Reciprocal
n-Body Collision Avoidance, volume 70, pages 3–19. 04 2011.

[VdBGS+16] Jur Van den Berg, Stephen Guy, Jamie Snape, Ming Lin, and Manocha. Rvo2
library: Reciprocal collision avoidance for real-time multi-agent simulation,
2016.

[VdBLM08] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity ob-
stacles for real-time multi-agent navigation. In 2008 IEEE International Con-
ference on Robotics and Automation, pages 1928–1935. IEEE, 2008.

[Wat81] David F Watson. Computing the n-dimensional delaunay tessellation with
application to voronoi polytopes. The computer journal, 24(2):167–172, 1981.

[WC11] G. Wagner and H. Choset. M*: A complete multirobot path planning algo-
rithm with performance bounds. In 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3260–3267, Sep. 2011.

[ZA19] H. Zhu and J. Alonso-Mora. Chance-constrained collision avoidance for mavs
in dynamic environments. IEEE Robotics and Automation Letters, 4(2):776–
783, 2019.

[ZWBS17] Dingjiang Zhou, Zijian Wang, Saptarshi Bandyopadhyay, and Mac Schwager.
Fast, on-line collision avoidance for dynamic vehicles using buffered voronoi
cells. IEEE Robotics and Automation Letters, 2(2):1047–1054, 2017.

18



7 Appendix

7.1 Dual functions

In this subsection, we derive the Lagrange dual function for the Voronoi cell generated by
polyhedra.

Polyhedra. In the case where our set E is specified by an affine constraint (i.e., E is a
polyhedron),

E = {y | Ay ≤ b},
with A ∈ Rm×n and b ∈ Rm, then the dual function can be easily computed.

First, note that the minimizer of ‖y‖22 − 2cTy can be found by setting the gradient to
zero (this is necessary and sufficient by convexity and differentiability), which yields that
the optimal point is y∗ = c, with optimal value

inf
y

(
‖y‖22 + 2cTy

)
= −‖c‖22 .

Applying this result yields

g(x, λ) = inf
y

(
‖y‖22 − 2xTy + λT (Ay − b)

)
= −

∥∥x− ATλ/2∥∥2
2
− bTλ,

with λ ≥ 0.

7.2 Extensions

There are several natural extensions to problem (8). These extensions can be combined, as
needed.

Union of convex sets. We can extend the formalism of (8) to include the Voronoi region
generated by a finite union of convex sets. That is, if S can be written in the form

S =
⋃̀
i=1

{y | fi(y) ≤ 0},

for convex functions fi : Rn → Rmi . Note that, in general, S will not be convex, while
the resulting Voronoi region always is, since the region is the intersection of a family of
hyperplanes. Additionally, we will require that there exist y0i ∈ Rn with fi(y

0
i ) < 0 for

i = 1, . . . , ` if fi is not affine. The corresponding problem is given by

minimize ‖x− xg‖22
subject to ‖xc‖22 − 2xTxc ≤ inffi(y)≤0

(
‖y‖22 − 2yTx

)
, i = 1, . . . , `.

In this case, we simply derive a dual function for each constraint with i = 1, . . . , `, writing
each as a constraint as in (10), each of which is convex.

19



Intersection of a convex set with the Voronoi cell. Given a convex set C specified
by

C = {x | h(x) ≤ 0},

where h : Rn → Rr is a convex function, then the problem

minimize ‖x− xg‖22
subject to ‖xc‖22 − 2xTxc ≤ inff(y)≤0

(
‖y‖22 − 2yTx

)
h(x) ≤ 0,

is the intersection of the Voronoi cell in question and the set C, which is also easily solvable
assuming h can be easily evaluated at any point in its domain.

20


