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Abstract

We introduce ZODA, short for ‘zero-overhead data availability,’ which is a protocol
for proving that symbols received from an encoding (for tensor codes) were correctly
constructed. ZODA has optimal overhead for both the encoder and the samplers. Con-
cretely, the ZODA scheme incurs essentially no incremental costs (in either computation
or size) beyond those of the tensor encoding itself. In particular, we show that a slight
modification to the encoding scheme for tensor codes allows sampled rows and columns
of this modified encoding to become proofs of their own correctness. When used as part
of a data availability sampling protocol, both encoders (who encode some data using a
tensor code with some slight modifications) and samplers (who sample symbols from
the purported encoding and verify that these samples are correctly encoded) incur no
incremental communication costs and only small additional computational costs over
having done the original tensor encoding. ZODA additionally requires no trusted setup
and is plausibly post-quantum secure.

Introduction

A proof of encoding is a protocol for convincing a sampler (who samples small chunks of
a certain piece of data) that an encoder has correctly encoded some data. These protocols
are used in a applications including verifiable information dispersal [Rab89,CT05,NNT22,
FLLY24] and data availability sampling [ASB18,HSW23]. Such applications require highly
efficient encoders and samplers, as well as minimal trust assumptions.

Data availability sampling. In this paper, we are primarily motivated by the application
of data availability sampling (DAS), a notion first introduced in [ASB18]. A DAS protocol
aims to convince samplers that a piece of data, held by nodes in a potentially lossy or
adversarial network, can be recovered. In order to avoid downloading the data in its entirety,
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nodes instead request (an ideally small number of) random samples and make additional
assumptions about the network. For example, nodes may assume that a certain number of
honest nodes that are connected to the network are also requesting random samples, such
that, if all sampling nodes come together, they can decode the original piece of data. These
DAS protocols are primarily deployed to scale blockchains: nodes only need to download
small subsets of the data, while maintaining strong availability guarantees. As a result,
blockchains employing DAS techniques can theoretically support significantly larger blocks,
since very few parties (if any) need to hold all of the data at once. Efficient DAS constructions
rely on the properties of erasure codes. First, data is encoded using a suitable erasure code.
Nodes then randomly sample symbols of the resulting codeword and accept the data as
available if the network successfully responds to their queries. In order for nodes to be able
to reconstruct data from enough samples, the received samples must be constructed correctly
and nodes must collectively sample enough correctly-encoded symbols to reconstruct the
original data. In this work, we are motivated by efficient protocols which show that the
sampled encodings were correct, ideally with minimal overhead over sending just the sample.
(For a broader treatment of DAS protocols, the works of [ASB18,HSW23] introduce several
foundational definitions and primitives.)

Existing constructions. A number of protocols for proving that an encoding was con-
structed correctly have been proposed. One construction involves fraud-proofs [ASB18].
This construction incurs no encoder overhead but requires some nodes to redundantly re-
compute the encoding such that a fraud proof can be constructed if the encoder behaved
dishonestly. This, in turn, reduces the efficiency of the resulting protocol and introduces
a trust assumption—every node must be connected to at least one honest node who re-
computes this complete encoding. Another category of protocols instead use validity proofs.
The most popular such construction [But20] is based on the polynomial commitment scheme
of [KZG10]. This construction is efficient to verify and removes the need for some nodes to
always recompute the complete encoding but requires a trusted setup, is not post-quantum
secure, and imposes large overhead on the encoder. This overhead comes from the fact
that the encoder has to construct a KZG commitment to the encoding and open this com-
mitment at every point which could be sampled in the associated DAS protocol. These
computations are concretely expensive, even on modern hardware. A recently-proposed set
of alternatives [HSW23,HSW24] adapt hash-based interactive oracle proofs which are plausi-
bly post-quantum secure and do not require a trusted setup. Compared to the KZG scheme,
these constructions feature efficient encoders but impose prohibitive costs on samplers: every
sampler needs to download an (identical) large commitment. This commitment represents
pure overhead for the network as it cannot be used to decode the original data and is only
used to verify that the samples are correctly encoded.

This work. In this paper, we propose ZODA, a simple protocol for proving that received
samples from a piece of data were correctly encoded. ZODA is extremely efficient for both the
encoder and sampler and does not require a trusted setup. Specifically, the encoder incurs
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essentially no additional overhead beyond the cost of encoding the data and committing
to the encoding (for example, using a Merkle tree). Concretely, the computational cost
is nearly identical to running an encoder in the fraud-proof based construction of [ASB18].
Sampling communication is optimal in the sense that no additional data or proofs are required
to establish the validity of the encoding beyond downloading parts of the encoding itself.
Finally, we incur no network overhead beyond the transmission of the encoded data (and
associated Merkle openings).

Comparison. Our construction amends the encoding procedure of [ASB18] to derive ran-
domness from a partially-encoded matrix before completing the tensor encoding. As in the
Ligero-based protocol of [HSW23], ZODA samplers uniformly sample rows and columns and
perform consistency checks. However, in our resulting DAS construction, sampled rows and
columns also double as valid samples for decoding, eliminating overhead for the sampler.
This slight amendment to the encoding procedure of [ASB18] introduces negligible overhead
for the encoder while removing the need for fraud proofs to ensure the encoding was con-
structed correctly. While we do not explicitly construct a DAS scheme which uses ZODA,
we anticipate the scalability benefits to be significant. By removing the need for redun-
dant re-encoding, ZODA can be used to reduce latency and network bandwidth compared
to fraud-proof-based constructions. Compared to KZG-based constructions, we anticipate
ZODA could meaningfully reduce proving latency and costs associated with constructing
opening proofs, allowing the network to support more data while lowering both latency and
hardware requirements.

Organization. In §1, we introduce some basic notation, which will considerably simplify
proofs later in the paper, and some basic results we use throughout. In §2, we discuss
subspace distance checks, a key component of the ZODA protocol, which we then present
in §3, along with proofs that this protocol satisfies some basic guarantees. In §4, we give a
concrete instance of the protocol, along with associated computational and communication
costs for both the encoding and sampling algorithms in a variety of parameter settings.
Finally, in §5, we present some practical extensions and optimizations that may be useful
depending on the requirements of the application.

1 Notation, conventions, and preliminaries

Throughout this paper, we use the conventions and notation of [EA23], many of which are
standard linear algebraic conventions. Let F be a (in this paper, finite) field and write x ∈ Fn

to be a (column) n-vector with entries in F. We write A ∈ Fm×n for an m×n matrix A with
elements in the field F and write R(A) as the set of all linear combinations of the columns
of A, called its range. When convenient, we will also interpret the n-vector x to be an n× 1
matrix and we use this in what follows. Finally, if S ⊆ {1, . . . ,m} then we write AS as the
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(sub)matrix containing rows S, taken from A, such that

(Ax)S = ASx. (1)

(We assume some standard ordering such that the left-hand-side and the right-hand-side
make sense and are equal for any choice of A, S, and x.)

Weight. We define the weight of a matrix A ∈ Fm×n to be

∥A∥ = number of nonzero rows of A.

The weight ∥x∥ of a vector x ∈ Fn, interpreted as an n × 1 matrix, is then the number of
nonzero entries of x. A very convenient fact we will use later in this paper is that

∥Ax∥ ≤ ∥A∥, (2)

for any matrix A ∈ Fm×n and vector x ∈ Fn.

Codes and distance. We define a linear code to be a matrix G ∈ Fm×n. (Technically,
codes are usually defined to be linear subspaces, but we ignore the distinction here as it is
not useful in our case.) The distance d ≥ 0 of the code G is defined as

d = min
x ̸=0
∥Gx∥.

In other words, the distance is defined as the smallest weight of any possible codeword Gx
generated by nonzero messages x. The distance of a vector space V is defined as the distance
of any injective matrix G′ which generates it, i.e., V = R(G′). An important implication of
this definition of distance, which we use in what follows, is that a matrix G is injective if,
and only if, its distance d is strictly positive, i.e., if d > 0. Though it will only be mentioned
in passing, we define the relative distance of G to be d/m, the ratio of the distance and the
length of the codewords from G, and its rate, usually written ρ, is defined as the message
size over the codeword length, ρ = n/m.

Probabilistic implications. Finally, we find it convenient to use the probabilistic impli-
cations of [EA23]. Let Pr and Qr′ be logical statements depending on some randomness r
and r′ drawn from some suitable distribution, which will always be specified in the text.
(Though most of the time we will have r = r′ or r and r′ independent.) We write,

Pr =⇒
p

Qr′ ,

whenever Pr(Pr ∧ ¬Qr′) ≤ p. In other words, the above statement says that the probability
that the conclusion is false, provided the premise is true, is no more than p over the pro-
vided randomness. One useful consequence of this notation, which will be used consistently
throughout, is the following. Given statements Pr, Qr′ , and Tr′′ , if

Pr =⇒
p

Qr′ and Qr′ =⇒
p′

Tr′′ ,
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over randomness r and r′ in the first, and in the second over randomness r′ and r′′, then we
have the following probabilistic implication:

Pr =⇒
p+p′

Tr′′ ,

over the randomness r and r′′ (i.e., marginalizing out r′ in the resulting distribution). This
follows nearly directly from the union bound. Note that this is true independent of the
distribution from which r, r′, and r′′ are drawn from. For a proof, see [EA23, App. A].

Sparsity checks. The notion of a sparsity check will also be used throughout this pa-
per. Provided a vector x ∈ Fn and some sparsity parameter q > 0, a sparsity check is a
probabilistic implication of the form

xS = 0 =⇒
p

∥x∥ < q, (3)

where S ⊆ {1, . . . , n} is a uniformly random subset of size |S|, and

p ≤
(
1− q

n

)|S|
. (4)

(If |S| is on the order of n, a better bound is possible, though this bound will suffice for our
purposes.) Sparsity checks are particularly useful for verifying that two vectors are ‘close’
in that they differ in at most q entries. They are also useful since, given a matrix A, we can
check that Ax is close to y by checking that

(Ax)S = yS,

which only requires access to the S rows of A, using (1), along with the S entries of y. We
will constantly be using the probability p provided in (3) and its bound (4) throughout the
rest of the paper and proofs.

2 Subspace distance checks

We assume reasonable familiarity with the Ligero protocol [AHIV17] and associated proxim-
ity tests throughout the remainder of the paper. For a gentle introduction, using the notation
and conventions of this paper, we suggest [AER24]. We begin with a basic overview of sub-
space distance checks, which we use extensively in the construction of the protocol.

2.1 Subspace distance checks

In what follows, G ∈ Fm×n will denote a code with distance d > 0 with V = R(G), and
Ḡ ∈ Fm̄×n denotes another code, which we define next. We write ḡTr̄ for the r̄th row of Ḡ.
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Subspace distance check. At the highest level, a subspace distance check, sometimes also
known as a proximity test, seeks to evaluate whether a given matrix X ∈ Fm×n′

‘is near’ to
an encoding of some matrix X̃ ∈ Fn×n′

. In particular, a proximity test makes the following
guarantee:

∥Xḡr̄ − V ∥ < q =⇒
p′

∥X −GX̃∥ < q,

where r̄ is uniformly drawn from 1, . . . , m̄, the proximity parameter q ≤ d/2 is user-set, and
the error probability p′ depends on the exact choice of code Ḡ used. (We will make this
concrete in what follows.) In other words, a subspace distance check says, roughly: if a
(structured) random linear combination of the columns of X is q-close to some vector space
V , generated by the code G, then the columns of the matrix of X must be close to the
encoded columns of some matrix X̃. This reduces checking that each column of a matrix X
is close to a vector space V , to checking that a single vector is close to the vector space V .

Known results. This beautiful fact was first discovered in [AHIV17] where Ḡ is the
Hadamard code when q ≤ d/3 and G is otherwise arbitrary, with p′ ≤ q/|F|. It was
then extended to the case where G is a Reed–Solomon code and Ḡ is either Hadamard or
Reed–Solomon by [BCI+23] in the case where q ≤ d/2; here the bounds are p′ ≤ m/|F|,
if Hadamard, or p′ ≤ mn/|F|, if Reed–Solomon. It has been further extended to the case
where Ḡ has structured ‘logarithmic randomness’ in [DP24] (i.e., when Ḡ can be written
as the Kronecker product of generators of Hadamard codes for messages of length 2) and
G is any matrix with distance d, for q < d/3 and p′ ≤ 2q/|F|. This bound was improved
and generalized for any Ḡ that can be written as the Kronecker product of any k matrices
Ḡi, each with 2 columns, for q ≤ d/3 and error probability p′ ≤ q((1− δ1) + · · · + (1− δk))
where δi is the relative distance of matrix Ḡi in [AER24]. And, finally, it was shown that
for certain structured codes G, such as Reed–Solomon, this last bound can be strengthened
from requiring that q ≤ d/3 to any case where q ≤ d/2, in [DG24]. While there are many
nice results for these codes, we will only use two in the rest of the paper, which we describe
next in full detail.

2.2 Subspace distance checks in this paper

In this paper, we will use two important special cases of the subspace distance checks.
Here, the matrices G ∈ Fm×n (with distance d) and Ḡ (defined soon) along with the space
V = R(G) are defined similarly as above, along with the matrix X ∈ Fm×n′

and X̃ ∈ Fn×n′
.

Subspace distance for general codes. The main check we will use is the original con-
struction of Ligero [AHIV17]. Here, we define Ḡ ∈ F|F|n×n to be the Hadamard code; i.e., the
matrix whose rows contain all possible n-vectors with elements in F. Drawing a uniformly
random row ḡr̄ from Ḡ corresponds to drawing a uniformly random n-vector with elements
in F. In this case, for any vector space V with distance d we have, for any q ≤ d/3,

∥Xḡr̄ − V ∥ < q =⇒
p′

∥X −GX̃∥ < q, (5)
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where r̄ ∈ {1, . . . , |F|n} uniformly drawn and

p′ ≤ q

|F|
.

In English, the probabilistic implication (5) roughly says that: if a uniformly random linear
combination of the columns of X is q-close to some vector space V , then the columns of X
must each have been q-close to the vector space, except with error no more than p′. Since
q ≤ d/3 is often set as large as possible, then the error bound becomes

p′ ≤ d

3|F|
. (6)

Subspace distance for Reed–Solomon codes. In the special case that G ∈ Fm×n is a
Reed–Solomon code matrix and V is its corresponding range, we have a slightly more relaxed
regime. From before, let Ḡ be the Hadamard code for F, then we can set q ≤ d/2 such that

∥Xḡr̄ − V ∥ < q =⇒
p′rs

∥X −GX̃∥ < q,

where r̄ is uniformly drawn from {1, . . . , |F|n}, and

p′rs ≤
m

|F|
. (7)

For comparison’s sake, let m = 2n. Since we often set q ≤ d/2 and Reed–Solomon codes are
maximum distance separable, i.e., satisfy n = m− d + 1, then the error bound in this case
is only slightly worse than the original bound (6):

p′rs ≤
2(d− 1)

|F|

by a factor of about 6. The trade-off is generally worth it since fewer queries are required to
ensure that ∥Xḡr̄ − V ∥ < d/2 versus d/3 to any fixed error probability, while only gaining a
very small constant factor of error.

Note. We will be using p′ as defined in (5) constantly throughout the paper (along with p,
as defined in (3) and after) in both proofs and discussions. Since these will be so commonly
used, we will reserve the symbols p and p′ to be exactly as defined here, unless otherwise
specified in the text.

3 Zero-overhead proofs of encoding for tensor codes

In this section, we present a description of the protocol in the interactive setting. We will
show that a simple modification to an encoding procedure for the tensor code G′⊗G where
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G ∈ Fm×n and G′ ∈ Fm′×n′
results in a codeword whose rows and columns are succinct

proofs of their own correct encoding. In particular, we will show that sampling a small
number of rows and columns of this purported codeword convinces a sampler that (a) the
codeword is, with high probability, very close to a correct encoding of some unique message,
and (b) the received rows and columns are correct encodings of this unique message. (We
call such a scheme a proof of encoding since it shows that the received rows and columns
are correct encodings of some unique message.) It will also have one important additional
property: any sampler convinced of (a) and (b) who receives further rows and columns of
the codeword can check to see if these rows and columns are correct encodings, using no
additional communication and very little additional computation, even if these rows and
columns are selected adversarially; i.e., after observing the sampler’s randomness. We call
this construction zero-overhead since the resulting encoding requires no more space (and
only marginally more computation) over having done the standard tensor encoding.

High-level idea. A tensor encoding of some data matrix X̃ ∈ Fn×n′
is given by

GX̃G′T .

The idea for a zero-overhead proof of encoding is to add a small amount of randomness to the
encoding, given by some diagonal matrix Dr̄ with uniformly random entries in the diagonal:

GX̃Dr̄G
′T .

(Here, the randomness may be interactive or derived from a certain commitment, as we
describe next.) Surprisingly, this small change allows anyone who samples a small number of
rows and columns of this encoded matrix to verify that, with high probability, these rows and
columns are indeed correct encodings of some X̃, without having to download the complete
matrix. In other words, this modification turns a tensor code’s rows and columns, roughly,
into their own succinct proofs which prove that they must have been correctly encoded.
(There are some slight complications with this exact picture, as described here, as G and G′

must be systematic in this construction, but the high-level idea is the same.)

Notation. For notational convenience, let gTi denote the ith row of G and g̃′r denote the
rth column of G′. As in the previous section, §2.2, we will define Ḡ ∈ Fm̄×n′

to be the
Hadamard code matrix such that m̄ = |F|n′

and ḡTr̄ will denote its r̄th row. This notation,
and its associated dimensions, will remain consistent for the rest of the paper unless otherwise
stated.

3.1 Protocol description

The protocol, which we call ZODA, short for zero-overhead data availability, is broken down
into three algorithms, each providing certain guarantees. The first is the encoding algorithm.
This algorithm takes some data, represented as a matrix, and constructs an encoding of it
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such that rows and columns of this encoding are themselves proofs of their own correct
encoding, assuming the protocol was followed. The second is the sampling algorithm. The
sampling algorithm allows anyone who is sampling a small number of rows and columns of a
purported encoding to verify that the purported encoding is (close to) an encoding of some
unique message, and that the sampled rows and columns correspond to the correct encoding
of this unique message, with high probability. Finally, the decoding algorithm allows anyone
who has (1) run the sampling protocol, and (2) subsequently received ‘enough’ rows and
columns of the purported encoding, in a way we make precise next, to check that these
received rows/columns were correctly encoded and, if enough of these checks pass, to recover
the unique encoded message by using any erasure decoder for G or G′. Though this protocol
is written with an eye towards its use in data availability, we do not talk about specific
applications except at a high level in this paper. For (much) more, including definitions
for the specific case of data availability, and other constructions used there, see, [ASB18]
and [HSW23].

3.1.1 Encoding algorithm

In this algorithm, the encoder will (a) commit to an encoding GX̃ and then (b) receive a
uniformly random r̄ ∈ {1, . . . , m̄} which will then be used to construct an encoding X̃Dr̄G

′T ,
where Dr̄ = diag(ḡr̄) is a diagonal matrix with uniformly random elements in the diagonal.
The idea is that the sampler can use rows of GX̃ and columns of another (essentially redun-
dant) encoding X̃Dr̄G

′T to both verify that the columns of X̃ were correctly encoded via
G and that the rows of X̃ were also correctly encoded via G′, with some extra randomness.
(We note that, in practical data availability schemes such as [ASB18,But20], this encoding
is already done, minus the additional random multiplier, so this construction incurs only a
very small amount of additional work for the encoder.) This can then be used to prove that
the complete encoding GX̃Dr̄G

′T was also correctly performed with essentially no additional
overhead for the encoder, relative to performing the standard tensor encoding.

Description. We outline the steps of the encoding algorithm below.

1. Commit to the rows of X = GX̃

2. Receive uniformly sampled r̄ ∈ {1, . . . , m̄} (i.e., receive uniformly random ḡr̄ ∈ Fn′
)

3. Construct diagonal with given uniformly random entries, Dr̄ = diag(ḡr̄)

4. Commit to the columns of Y = X̃Dr̄G
′T

5. Commit to complete encoding Z = GX̃Dr̄G
′T = GY

Discussion. As the randomness in our protocol is public coin, we note that the randomness
of step 2 can be either interactive or utilize the Fiat–Shamir transformation. Additionally,
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note that the step Y = X̃Dr̄G
′T is equivalent to scaling each column of X̃ by its correspond-

ing element in ḡr̄, encoding the rows of this scaled X̃ via G′, and placing each encoded row
as a column in Y . The only overhead over a standard data availability scheme such as the
one in [ASB18] comes from scaling the columns, which can be done in linear time in the
number of elements in X̃, which is much faster than the encoding time for most practical
codes. Additionally, for the remaining sections, we note that the columns of Y and entries
of Z depend implicitly on the randomness r̄, which is publicly known or otherwise derivable
from public knowledge, such as the commitment to the rows of X of step 1.

3.1.2 Sampling algorithm

In the interactive phase, the sampler simply samples a few rows of the otherwise opaque
matrix X and a few columns of Y and checks that these encodings are consistent. If so, then
the samples received must also be consistent with the encoding. This means that X and Y
must be close to the correct column and row encodings, respectively, of some unique matrix
X̃. These can be checked against the complete encoding matrix Z to verify that, indeed, the
sampled entries of Z are also symbols from the encoding of X̃, as required. The important
point to note is that the only work now required from the encoder is simply to open rows of
X, columns of Y , and entries of Z, with no additional computation necessary. It is important
to note that the sampling algorithm can construct Dr̄ from r̄, which we assume is public
knowledge. (For example, if r̄ is defined via Fiat–Shamir, then the commitment to the rows
of X suffices.)

Description. We outline the steps of the interactive phase below.

1. Sample S ⊆ {1, . . . ,m} of some (fixed) size |S|

2. Sample S ′ ⊆ {1, . . . ,m′} of some (fixed) size |S ′|

3. Receive the S rows of X, written XS, from the encoder

4. Receive the S ′ columns of Y , call them yj for every j ∈ S ′, from the encoder

5. Check XSDr̄g̃
′
j = (Gyj)S for every j ∈ S ′

6. Verify that Zij = gTi yj for each i ∈ S and j ∈ S ′

If the encoder does not provide a valid response in any one of these steps, the sampler does
not accept. If any equality check fails, the data needed to verify the check comprises a
succinct proof that the encoding was done incorrectly.

Discussion. Roughly speaking, the second-to-last step performs the standard Ligero-like
check described previously in §2.2. This convinces the sampler of three things. First, that
the matrix X is indeed q-close to the encoding of some unique (!) matrix X̃, via G. Second,
the S rows received from X are correct encodings of the columns of X̃. And, third, that yj is
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a collection of symbols from a correct encoding of the rows of X̃. The final check in the last
step simply convinces the sampler that the received samples of the matrix Z are symbols
from the tensor encoding of X̃. We note that these are all probabilistic statements and we
outline the exact probabilities in §3.2.

Guarantees under additional assumptions. One basic assumption is to assume that
the agent running the sampling algorithm is also connected to some other (honest) nodes
who are also running this sampling algorithm. (We say a node is honest here, if, upon
encountering a failing check, the node relays a succinct proof that this check was done
incorrectly to all of its connected peers.) In this case, we may assume that the number of
rows |S| or columns |S ′| that were sampled includes not just those of the agent, but also the
minimum amount of samples from the other honest nodes in the network. (Such a number
may be a parameter set by the protocol, for example.) Note that the agent running the
sampling algorithm may also be connected to other nodes which are dishonest—we make no
assumptions about how many such dishonest nodes there are, only about the honest ones.

3.1.3 Decoding algorithm

The decoding algorithm attempts to recover the data X̃ from enough samples of the rows of
X or the columns of Y . The reconstruction algorithm only succeeds with high probability
(see §3.2.4) and assumes that the sampling algorithm §3.1.2 was run before the reconstruction
algorithm. From before, we set d and d′ to be the distances of G and G′, respectively. As
a starting point, we assume that the decoder has received at least one of (a) |S| > m − d
rows of X or (b) |S ′| > m′ − d′ columns of Y . These sets S and S ′ should include sampled
columns from the sampling algorithm, run before the decoding algorithm. With this, the
decoding algorithm is very simple:

1. Verify that XSDr̄g
′
j = GSyj for each j ∈ S ′

2. If |S| > m− d, decode GSX̃ = XS via any erasure decoding algorithm for G

3. If |S ′| > m′ − d′, decode G′
S′X̃T = (Y T )S′ via any erasure decoding algorithm for G′

If any step fails, the algorithm rejects immediately and has a succinct proof that the encoding
was done incorrectly. (Steps 2 and 3 do not fail with high probability, assuming step 1 passes.)

Discussion. At a high level, the reconstruction algorithm works since, if we know that the
received rows XS corresponds to a (subset) of a correct encoding of X̃, then GS is injective
for |S| > m − d and hence has an inverse for elements in its range; i.e., we know that
GSX̃ = XS has a solution over X̃. A similar thing is true over G′

S′ if |S ′| > m′ − d′. The
fact that the received rows S or columns S ′ are symbols of the encoding of the unique (but
unknown) message X̃, given the check performed in step 1, is shown in §3.2.4. In fact, we
will show that this is true even in the extreme adversarial case where the rows S or columns
S ′ provided to the reconstruction algorithm are completely adversarially chosen even after
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knowing the randomness used in the sampling algorithm. The main challenge with this
adversarial choice is ensuring that the received rows and columns do, indeed, map to an
encoding of some (unique) message, which is guaranteed since we assume that the sampling
algorithm has been run prior to decoding, and that this check has succeeded. In lieu of
sampling, we note that it suffices also to receive |S| > m − q rows and a single column
|S ′| ≥ 1, which pass step 2’s check, since the proposition in the subspace distance check’s
probabilistic implication (5) holds.

3.2 Guarantees

The protocol (viewed as a collection of the above three algorithms) gives the following guar-
antees. First, it is complete: if the encoder is honest, the sampler will never reject. (And,
in turn, the decoding algorithm always succeeds in decoding the provided data.) Second,
the sampling algorithm guarantees unique decoding: if a sampler accepts, X is uniquely de-
codable to some X̃ except with error probability no more than p+ p′. Finally, the sampling
algorithm guarantees correct encoding: if the checks pass, the received rows of X, columns of
Y , and sampled elements of Z do indeed correspond to symbols of a correct encoding of X̃,
again with error probability no more than p+ p′. Finally, and most importantly, the decod-
ing algorithm satisfies a very strong notion which we call ‘adversarial reconstruction’: if the
sampling algorithm has been run once before the decoding algorithm, then it only suffices to
receive rows of X and/or columns of Y to both verify that these associated rows/columns
were correct and to decode X̃ using any erasure decoder.

3.2.1 Completeness

The completeness of the protocol; i.e., the fact that if X, Y , and Z are as defined in
the commitment phase of §3.1.1, then no sampler fails, is essentially immediate from the
definitions of X = GX̃, Y = XDr̄G

′T , and Z = GX̃Dr̄G
′T . We encourage the reader to read

through the protocol, plugging in the definitions of X, Y , Z, and Dr̄ = diag(ḡr̄), assuming
an honest encoder, to understand what is going on in the individual checks.

3.2.2 Unique decoding

The unique decoding property states that, after a single run of the sampling algorithm, it
must be true that, with error probability no more than p+ p′, the matrix X must be ‘close
to’ to a unique encoding of some piece of data X̃, in a way we make clear next. Here, as
before, we define p and p′ as the error probabilities of the sparsity check (4) and the subspace
distance check (5) (which depends on the code G used), respectively, where |S| is the number
of rows sampled. This has the immediate implication that, if the sampler can recover the
underlying data, it indeed recovers the unique data from which the query responses are
derived. For this particular proof, we will assume that the matrix G′ contains no zero entries
to simplify the proofs and the bounds. (This is the case with, e.g., Reed–Solomon, which
we use in our concrete instance of the system.) We note that this can be relatively easily
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extended to the more general case, with some hit to the error probability, if needed, but we
do not use this more general case in any practical instance.

Proof. The unique decoding property for this protocol follows nearly immediately from
the subspace distance checks performed in the interactive query phase, with one additional
observation: for every vector x ∈ Fn′

with no nonzero entries, Dr̄x has uniformly distributed
entries over the randomness r̄.

Now, from the sparsity check (3), we have, for any one j ∈ S ′,

(XDr̄g
′
j)S = (Gyj)S =⇒

p
∥XDr̄g

′
j −Gyj∥ < q,

where S ⊆ {1, . . . ,m} is a uniformly chosen random subset of (fixed) size |S| with

p ≤
(
1− q

m

)|S|
.

Since Dr̄g
′
j is uniformly randomly distributed for any j, then, from the subspace distance

check (5), there exists some matrix X̃ ∈ Fn×n′
such that

∥XDr̄g
′
j −Gyj∥ < q, for any one j ∈ S ′ =⇒

p′
∥X −GX̃∥ < q, (8)

where p′ is the probability of error defined in (6) or (7), depending on the code G. Here,
the randomness is over r̄ ∈ {1, . . . , m̄}. So, by chaining implications, we see that check 3
guarantees with error probability no more than p + p′ that the matrix X is q-close to the
encoding of a matrix X̃. Written out as a probabilistic implication, this says

(XDr̄g
′
j)S = (Gyj)S, for any one j ∈ S ′ =⇒

p+p′
∥X −GX̃∥ < q,

where the probability is over r̄ and the uniformly sampled subset S ⊆ {1, . . . ,m} of size |S|.
Finally, let X̃ ′ be any other possible data matrix. Then,

∥G(X̃ − X̃ ′)∥ ≤ ∥X −GX̃∥+ ∥X −GX̃ ′∥ < 2q ≤ d,

where we have used the definition that q ≤ d/2 from the discussion in §2.2 and the fact
that the distance of G is d. Hence, if the conclusion that ∥X − GX̃∥ < q is true (i.e., the
check does not erroneously pass, which happens with probability no more than p+ p′) then
X̃ ′ = X̃ so X̃ is unique.

Discussion. In a certain sense, the proof above convinces any sampler that the matrix X,
committed to by the encoder, is q-close to an encoding of some (unknown) matrix X̃. The
proof has an obvious place where it is loose: in our construction, we simply ‘throw away’
any additional certainty that we get from (8) by only ‘using’ one index j ∈ S ′ to prove the
claim. (Indeed, in our analysis, the sampler only really needs to sample one random column
to achieve the same error probability, so it suffices to set |S ′| = 1 with no additional error
gained.) An important and interesting future research direction would be to quantify how
much the probability of error drops as more queries are used in the probabilistic implication.
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3.2.3 Correct encoding

The correct encoding property implies that the samples received by the sampling algorithm
correspond, with error probability no more than p + p′, to an encoding of the underlying
data X̃. In fact, the protocol actually guarantees a much stronger statement, which we show
next in §3.2.4, but these proofs will serve as a warm-up for this stronger case.

Column proof. We first show that the received columns yj are correctly encoded by G′.
This is fairly easy to see. From the unique decoding argument, the sampler knows that with
error probability no more than p,

∥XDr̄g
′
j −Gyj∥ < q

for each j ∈ S ′, and, with additional error probability no more than p′,

∥X −GX̃∥ < q.

So, using (2), we have that, for each j ∈ S ′,

∥G(X̃Dr̄g
′
j − yj)∥ ≤ ∥X −GX̃∥+ ∥XDr̄g

′
j −Gyj∥ < 2q ≤ d, (9)

hence X̃Dr̄g
′
j = yj since G has distance d, which proves the claim that the received columns

yj are correct encodings of the rows of X̃ via G′Dr̄, except with probability no more than
p+ p′.

Row proof. We now show that the received rows XS are correctly encoded by G. This
proof is slightly more involved. Note that the sampler has checked that

XSDr̄g
′
j = GSyj,

for each j ∈ S ′ (though only one j suffices) and also knows that ∥X −GX̃∥ ≤ q, with error
probability no more than p+ p′. So, from the conclusion of the previous proof, since

yj = X̃Dr̄g
′
j,

for each j ∈ S ′, we know
XSDr̄g

′
j = GSX̃Dr̄g

′
j,

or, equivalently, that
(XS −GSX̃)Dr̄g

′
j = 0.

Since Dr̄g
′
j is uniformly distributed over the randomness r̄, then, from the zero check, we

know that
(XS −GSX̃)Dr̄g

′
j = 0 =⇒

1/|F|
XS = GSX̃.

Putting all of the probabilistic implications together then means that

XS = GSX̃,

except with probability no more than p+ p′ + 1/|F|.
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3.2.4 Adversarial reconstruction

The adversarial reconstruction property we prove below can be interpreted as roughly the
following: anyone who runs the sampling algorithm and accepts can receive a number of
untrusted queries and responses. These can then be used to decode the underlying data
matrix X̃. The reason that these received passing queries and responses are not necessarily
trusted is that we make no assumptions about which columns or rows are sent or received.
An adversary could then strategically ‘pick’ rows or columns that are not correctly encoded,
but might pass the checks done by the decoder, as the adversary has the freedom to choose
any row or column available in X or Y , after observing the sampling randomness.

Result. The result for this particular protocol will be the following: let d be the distance
of G and d′ be the distance of G′, then it suffices for a sampler to run the sampling protocol,
with p and p′ as defined above, and have either |S| > m − d rows of X or |S ′| > m′ − d′

columns of Y . (Note again that these rows or columns could be adversarially chosen by
the encoder, except for those sampled by the node, after observing all randomness in the
protocol, including the rows/columns requested by the sampling algorithm.) The sampler
will then be able to reconstruct X̃ using the S rows except with probability no more than

p+ p′ +
m

|F|
(10)

or the S ′ columns, except with probability no more than

m′p+ p′,

where, as before, p is the error probability of the sparsity check (4) and p′ is the error
probability of the subspace distance check (5) for the code G.

Row proof. We prove the ‘row’ side first. In particular, we will show that it suffices to
receive |S| > m− d rows of X in order to reconstruct X̃ with high probability. To do this,
we will show that the sampled rows S are correct encodings of X̃, i.e., with high probability

GSX̃ = XS,

even if S was chosen after observing the sampling randomness. Since the matrix GS has
a left inverse, then running Gaussian elimination suffices to recover X̃. (This is true since
GS has distance at least 1 as we have removed no more than m − |S| < m − (m − d) ≤ d
rows from G, so GS is therefore injective.) By assumption, the decoder has run the sampling
protocol and therefore verified that ∥XDr̄g

′
j − Gyj∥ ≤ q for some j ∈ S ′, fixed in what

follows, with error probability no more than p. This, in turn, means that the decoder has
therefore also verified that ∥X − GX̃∥ ≤ q, with additional error probability no more than
p′, over randomness r̄. For convenience, we will now set vr̄ = Dr̄gj, which we note is uniform
over r̄ in what follows. This means that, using the same reasoning, again, as (9):

∥G(X̃vr̄ − yj)∥ ≤ ∥X −GX̃∥+ ∥Xvr̄ −Gyj∥ < 2q ≤ d, (11)
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so X̃vr̄ = yj since G has distance d. From the protocol, the decoder then checks that all
rows S satisfy

XSvr̄ = GSyj

for this j. If this is not true, the decoder terminates and has a succinct proof that the
encoding was incorrectly performed. (Technically, the decoder only needs to terminate if
there are no more than m − d indices of S which pass the test, since otherwise it can still
decode X̃. Either way, it now holds a succinct proof that an encoding was incorrectly
performed if any index fails.) Finally, since we know that X̃vr̄ = yj from (11), then

XSvr̄ = GSX̃vr̄.

From the adversarial zero check in appendix A and the fact that vr̄ is uniformly random, we
then know that

XSvr̄ = GSX̃vr̄ =⇒
m/|F|

XS = GSX̃.

Chaining the probabilistic implications together means that XS = GSX̃, and hence the
decoder can recover X̃, except with probability no more than

p+ p′ +
m

|F|
.

Column proof. From before, we would like to prove that, given |S ′| > m′ − d′ columns
of Y , call each yj for j ∈ S ′, the decoder can reconstruct X̃ except with very low error
probability. Similar to the previous proof, we will show that these received columns are
correctly encoded with very high probability and hence we have

G′
S′X̃T = (Y T )S′ .

Note that, again, the matrix G′
S′ is injective since |S ′| > m′ − d′ so we may recover X̃T via

Gaussian elimination. Now, assume that the S known rows of X are those uniformly sampled
by the previously-run sampling algorithm. (If the decoder receives other rows, ignore these.)
The decoder then checks that

XSDr̄g
′
j = GSyj,

for each j ∈ S ′. If this check fails, the decoder again terminates and has a succinct proof
of an incorrect encoding. (As before, this is not technically necessary, unless no more than
m′ − d′ columns pass the check.) On the other hand, if this check succeeds, we know, via
the adversarial sparsity check in appendix A, that

(Xg′j −Gyj)S = 0, for each j ∈ S ′ =⇒
m′p

∥Xg′j −Gyj∥ < q, for each j ∈ S ′,

where the adversarial part comes from the fact that the j ∈ S ′ are chosen after the query set
S is known. Once this is the case, via the same inequality argument as (11), we have that

∥G(X̃g′j − yj)∥ < d,
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for each j ∈ S ′, hence
X̃g′j = yj,

so the received row encodings are correct with error probability no more than

m′p+ p′,

as required.

Discussion. In this case, we make no assumptions about the code. In some cases, for
example, when G is a Reed–Solomon code over a multiplicative subgroup of order m or the
field F is binary [LAHC16], it may be possible to much more quickly reconstruct the data
X̃ than suggested above via Gaussian elimination. Additionally, we note that we have only
made worst-case assumptions about the received data: i.e., that the adversary is in complete
control of all samples sent to the decoder. In spite of this, the guarantees still hold with high
probability, so long as the sampling algorithm has performed a few queries ahead of time.

No sampling. As mentioned before, in lieu of sampling, we note that it suffices also to
receive |S| > m− q rows and a single column |S ′| ≥ 1, which pass step 2’s check, since the
proposition in the subspace distance check’s probabilistic implication (5) holds. In this case
the error probability is

p′ +
m

|F|
,

which follows from a nearly identical argument to that of the row proof removing the sampling
error p coming from sampling the |S| rows.

3.3 Discussion

There are a number of interesting and potentially useful consequences of this construction.
We discuss some below.

Data availability. Data availability, roughly, corresponds to the belief that a piece of data
(in our case, X̃) is recoverable from a (potentially adversarial) network. Data availability
sampling is a type of protocol which convinces nodes that are connected to a potentially
lossy network that a piece of data X̃ can be recovered, under some assumptions, e.g., about
the minimal number of honest nodes running the protocol and connected to the network.
For example, in the previous construction, we have shown that any node that has run the
sampling scheme knows that any further received rows of X or columns of Y can be verified
to be correct symbols from the encoding of X̃, with high probability. If this node also
believes that there are ‘enough’ honest samplers also performing this check and accepting,
then, in a sense, it can be fairly certain that the data is available. That is: since enough
honest samplers have downloaded enough correctly-encoded pieces of data, each of these (a
priori unknown to be honest) samples could, in principle, be checked and used to decode
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X̃, implying that this data is available. (Dishonest nodes have no effect here, since their
data can simply be discarded if the corresponding checks run by the decoder do not pass.)
There is at least one set of definitions for ‘reasonable’ data availability schemes, originally
presented in [HSW23] and we show in appendix E that, as a consequence of unique decoding
and adversarial reconstruction proved above, our protocol also satisfies these definitions in
some settings.

Systematic encoding. In general, it is often useful (in practice) to have G and G′ be
systematic encodings; this in turn, means that the encoder only has to send X (which will
contain X̃ by definition), the columns of Y which do not contain X̃ (as it is already present
in X) and the quadrant of Z which does not contain either X nor Y . While we make no
assumptions about G, we have one assumption about G′: namely that is has no nonzero
entries. If G′ is systematic, i.e., it can be written as

G′ =

[
I
P ′

]
,

where I is the identity matrix and P ′ is another matrix. Note that this clearly has some
zeros in its top half, so the assumption made in the original proofs is not satisfied. On the
other hand, for Reed–Solomon codes, it is not hard to show that the ‘standard’ systematic
encoding will have P ′ with no entries equal to zero; we show this in appendix B. In this
case, the sampler needs to take at least one column in the nonsystematic part of Y , and the
claim is again satisfied. (We, again, make no assumptions about G in our proof, so sampling
over rows remains unchanged.)

Distributed encoding. Another observation is that the encoding can be performed in a
semi-distributed way: to construct X from X̃, each column needs to be encoded via G, which
is an embarrassingly parallel task. Once the column encoding is performed, it is possible
to send individual rows to different nodes, who then use those commitments to construct
a Merkle tree (which we note has only n leaves, square root of the number of entries in X̃
which, assuming it is square, is n2). Similarly, anyone who holds a complete row of X, which
was necessary to construct the Merkle commitment over the rows, can then encode this row
to get a row of Y and Z (after deriving the appropriate randomness from the commitment).
A commitment to the rows of Y and entries of Z may be similarly parallelized over a group
of nodes who share the appropriate data.

4 Numerics

In this section, we describe a concrete instance of the protocol and show both asymptotics
and concrete values in some cases where the parameters are reasonable. We then show that
ZODA has the lowest total network communication over all modern protocols (including
KZG, and the interactive variation of FRIDA of [EMA24]).
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Codes. In this case we set the codes G ∈ Fm×n and G′ ∈ Fm′×n′
to be Reed–Solomon

codes G = G′ that are efficiently encodable over some subset of F, such that Gx can be
evaluated in ∼ m log(m) time for any x ∈ Fn. (The logarithm here is usually taken to base
2.) We set the rate ρ of the code to be ρ = 1/2, so m = 2n. Note that, in this case, the total
matrix size of the data X̃ ∈ Fn×n is n2 field elements, which means that rows and columns
are n elements each, and hence much smaller than the size of the total matrix as n grows
large.

Error probabilities. Since G is a Reed–Solomon code matrix, the error probability of the
subspace distance check is no more than prs’ as given in (7):

p′rs ≤
2(d− 1)

|F|
=

2n

|F|
,

where we have (again) used the fact that d = m − n + 1 = n + 1 since Reed–Solomon is
maximum distance separable. We will also set q = n/2 < d/2 such that, for error probability
p, if we want to have (

1− q

m

)|S|
≤

(
1− (n/2)

m

)|S|

=

(
3

4

)|S|

≤ p,

we need to sample

|S| =
⌈

log(p)

log(3/4)

⌉
rows of X, where the logarithm can be to any base.

Encoding work. With the above parameters, the total amount of work the encoder has
to do is (1) encode the columns of X̃ by computing X = GX̃, which can be evaluated
in ∼ nm log(m) ∼ n2 log(n) time (one matrix-vector multiplication of G by each of the
n columns), and commit to the rows of X. If the commitment is a Merkle commitment,
which we assume in what follows, this takes roughly m log(m)≪ mn log(n) time. Then (2)
the encoder has to sample randomness r̄ from {1, . . . , m̄} and construct Dr̄ = diag(ḡr̄); i.e.,
construct a uniformly random n-vector ḡr̄ ∈ Fn using r̄ and then set the diagonal elements of
Dr̄ to the entries of ḡr̄. After this, the encoder then computes X̃Dr̄ by scaling the n columns
of X̃ (taking n2 time; i.e., the number of entries of X) and then computes the encoding of
the rows of X̃; i.e., it computes Y = X̃Dr̄G

′T , which can also be done in nm log(m) time.
The encoder then commits to these m columns of Y , which also takes negligible time over
the encoding. Finally, the encoder computes Z = GY by encoding the columns of Y , which
takes m2 log(m) time and commits to each of its m2 entries, which takes also m2 log(m) time,
making this the most time-consuming step. This gives a total of around

m2 log(m) ∼ n2 log(n)

time to run the encoding algorithm, ignoring constants.
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Communication total. For now, we allow (again) the matrices G ∈ Fm×n and G′ ∈
Fm′×n′

to be arbitrary, since the total communication may be of interest for more general
codes than the concrete construction we present below. (We specialize them to the cases
introduced at the beginning of this subsection, next.) To begin, the sampler receives three
commitments, each of some size C: one for the rows of X, one for the columns of Y , and one
for the entries of Z. It also receives the randomness r̄ which consists of log2(m̄) = n log2(|F′|)
total bits if uniform, or consists of the size C of the commitment over the rows of X if using
Fiat–Shamir randomness. It then requests |S| rows of X and |S ′| columns of Y (which takes
|S| log2(m) bits and |S ′| log2(m′) bits, respectively), along and openings for each of these.
The opening of a Merkle proof of the rows of X (or columns of Y ) requires C log2(m) bits
(C log2(m

′)) for each row (column), which means that the total communication is

|S|(C log2(m) + n log2(|F|)) + |S ′|(C log2(m
′) + n log2(|F|)) + 3C.

bits for the |S| rows of X and the |S ′| columns of Y . Finally, the sampler requests |S||S ′|
elements of Z, which take a total of |S||S ′|(C log2(mm′)+ log2(|F′|)) bits. This gives a total
amount of communication, in bits, of

C(|S| log2(m) + |S ′| log2(m′) + |S||S ′| log2(mm′))︸ ︷︷ ︸
commitment total

+(|S|n+ |S ′|n′ + |S||S ′|) log2(|F|)︸ ︷︷ ︸
elements total

.

We note that |S| ≪ n for essentially any reasonable p with n moderate, as we will see next.

Concrete communication cost. We can specialize this to the case of a Reed–Solomon
code for G and G′ with the same relative rates n/m = n′/m′ = ρ, total data size N , in
bits, and n = n′. This means that the total data square X̃ has N/ log2(|F|) elements, which
means that n =

√
N/ log2(|F|). Finally, setting |S ′| = |S|, gives

C|S|(|S|+ 1) log2

(
N

ρ2 log2(|F|)

)
+ 2|S|

√
N log2(|F|) + |S|2 log2(|F|),

where

|S| =
⌈

log(p)

log((1 + ρ)/2)

⌉
.

Setting p ≤ 2−7 and ρ = 1/2 means that |S| = 17 suffices. Setting p ≤ 2−20 means that
|S| = 51 suffices, and setting p ≤ 2−80 means that |S| = 193 samples is enough. As the
amount of data, N , becomes large, we note that the total communication is dominated by
receiving the field elements for the |S| rows and columns that were sampled, corresponding
to the middle term in the above expression:

2|S|
√

N log2(|F|).
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Sampling work. The total sampler work is also relatively simple. For each j ∈ S ′, the
sampler computes |S| matrix-vector products when computing XSDr̄gj, each of which cost
about n operations, and computing an encoding Gyj which costs m log(n) operations. This
totals to around |S ′|(|S|n +m log(n)) operations. It then checks equality between XSDr̄gj
and GSyj and then verifies that Zij = (Gyj)i for each i ∈ S and j ∈ S ′. (It also verifies all
Merkle openings of the sent data, but we do not include this cost here since it is negligible
relative to the rest of the operations.) This totals to a cost of around

|S ′|(|S|n+ 2n log(n))

operations for the sampler.

Decoding work. The reconstruction work is rather small: it suffices only to reconstruct a
message given an erasure-coded Reed–Solomon codeword with no errors. There are several
efficient methods to do this, some over binary fields [Tay24], but in general, the cost is still
around n log(n). In either setting, after receiving at least n + 1 samples of either rows or
columns, the algorithm of §3.1.3 gives that the received rows or columns are correctly encoded
with high probability, so it suffices to decode each received row (or column) directly, costing
around n2 log(n) total time.

4.1 Comparisons

We compare the current scheme, which is essentially a drop-in replacement for the proof of
encoding initially described in [ASB18] and implemented in the Celestia protocol, with 2D
KZG [But20] and the interactive variant of FRIDA [EMA24]. The code used to construct
these comparisons can be found in

https://github.com/bcc-research/zoda-numerics

High level description. We compare the three schemes, put roughly on equal footing, in
the following way. First, we define independent samplers for each scheme, each of which sam-
ples down to some (fixed) error probability. We then compute the minimum number of such
samplers that are necessary to ensure that, collectively, they are able to reconstruct a block,
except with probability no more than 2−40. (To do this, we use some basic approximations,
which we describe below.)

Collecting samples. It is relatively easy to compute the probability of gathering fewer
than ρm samples from a collection of m elements (assuming sampling with replacement)
after t tries, where 0 ≤ ρ < 1. We would like to ensure that this probability is smaller than
p̄, which we set to be 2−40 for the numerical experiments. In particular, for any ℓ ≤ ρm,
there are (

m

ℓ

)
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subsets of size ℓ. Landing in any one particular subset of size ℓ happens with probability
(ℓ/m)t, which means we must have, summing for each subset size ℓ ≤ ρm, that

ρm∑
ℓ=1

(
m

ℓ

)(
ℓ

m

)t

≤ p̄. (12)

(The left hand side here denotes the probability of independently sampling fewer than ρ
proportion of rows, while the right hand side is our desired error probability.) One obvious
and reasonably tight approximation for ρ greater than around 1/2 and suitably large m is
to note that, for each ℓ in the sum, we have ℓ/m ≤ ρ and that

ρm∑
ℓ=1

(
m

ℓ

)
≤

m∑
ℓ=0

(
m

ℓ

)
≤ 2m.

This can be used to bound the sum as

ρm∑
ℓ=1

(
m

ℓ

)(
ℓ

m

)t

≤ 2mρt.

In other words, choosing t to satisfy
2mρt ≤ p̄, (13)

or, equivalently, getting t ≥ (m+ log2(1/p̄))/ log2(1/ρ) samples, suffices.

Comparison. Using the above approximation, we choose ρ to be the proportion of samples
needed from the encoding in order to decode the original message. (In general, since we only
use Reed–Solomon codes in what follows, this is generally the same as the rate of the code
in question.) Samplers then sample |S| elements with replacement (as a decent bound for
sampling without replacement) in order to ensure that, if the network withholds some fixed
proportion of the data, this withheld proportion is < ρ of the data with probability at most
2−80 and can therefore be decoded; i.e., we set |S| such that ρ|S| ≤ 2−80. (In ZODA, we set
the number of samples to be |S| such that we are within unique decoding radius; i.e., we set
((1+ρ)/2)|S| ≤ 2−80 which immediately implies the previous condition.) Finally, we then set
the number of samplers to be k such that, with probability at least 2−40, the k samplers, who
have all sampled independently, without replacement collectively have at least proportion ρ
of the data (at least ρm samples). In other words, using the bound (13), we choose k such
that

2mρk|S| ≤ 2−40,

or, since ρ|S| ≤ 2−80,

k ≥ m+ 40

80
. (14)

Based on this, we then compute the total communication the network performs to provide
the |S| samples (entries, rows, or cols, depending on the scheme) to each of the k nodes,
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along with the necessary commitments. Additionally, we write the resulting ratio of this
total communication to the size of the original data N as the network inefficiency : the total
amount of communication the network has to perform over having simply sent the data to
exactly one other party. (This ratio is always at least 1.) In table 1, we compare ZODA, the
2D KZG scheme described in [But20] and [HSW23], and the interactive version of FRIDA
described in [EMA24], which has substantially lower network inefficiency than FRIDA as
described originally in [HSW24].

Protocol instances. We instantiate all three protocols with variable data sizes N ranging
from 32MiB to 1TiB. For ZODA, we set |F| = 2128, while for ZODA and 2D KZG, we
choose the row encoding to have ρ = 1/2 (and similarly with the column encoding) which
are standard parameters. In contrast, for FRIDA we choose the rate ρ = 1/4 to be roughly
comparable. We choose |S| in ZODA such that p ≤ 2−80 (which, in turn, implies that
ρ|S| ≤ 2−80) while the number of samples s in 2D KZG is chosen such that ρs ≤ 2−80. Since
FRIDA needs to guarantee unique decoding, we choose the number of samples s such that
((1 + ρ)/2)s ≤ 2−80. For each protocol, k is then chosen to ensure that there are enough
samples to reconstruct except with probability no more than 2−40, as computed in (14).
Finally, we note that for 2D KZG, to make a fair comparison, we have two variations. One
is the vanilla protocol as described in [But20] (which we will call ‘elementwise 2D KZG’)
where nodes sample |S| individual entries until (1− (1−ρ)2)|S| = (3/4)|S| ≤ 2−80 (the higher
rate reflects the fact that more samples are needed to ensure reconstruction is possible, when
sampling only entries of a tensor code). The second is what we will call the row/column-
wise protocol, which allows nodes to sample complete rows and columns until ρ|S| ≤ 2−80.
The latter protocol leads to larger per-node communication but substantially lower network
inefficiency.

Results. All results are in table 1 for data sizes ranging from 32MiB to 1TiB. We note a
few interesting findings. First, that ZODA has the lowest total network inefficiency of all
protocols: this is due to the fact that any sampler for ZODA does not need to download any
additional overhead over the encoding itself, other than the Merkle openings which are very
small relative to the size of each row or column. (Contrast this, for example, to 2D KZG,
where every sample must come with an additional group element that acts, roughly, as a
proof that its corresponding sample is correctly encoded.) Additionally, there is a fairly clear
tradeoff: protocols that are not zero overhead, roughly speaking, must trade the per-node
communication with the total overhead coming from the network. This is not the case with
zero overhead protocols since, by definition, every sample is ‘useful’ in reconstructing the
original data. (Though not all samples are created equal: it may be the case that ‘too small’
of a sample, such as, e.g., individual entries of the encoding in the case of ZODA, provide
no guarantees for the sampling node.) We do note that, at least in ZODA, depending on
which tradeoffs we wish to make, it is possible to decrease the node size with only a small
amount of additional overhead (or some other tradeoffs). We discuss such approaches in the
following section. Finally, we note that the elementwise KZG construction and interactive
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ZODA 2D KZG Row/Col 2D KZG Elementwise Interactive FRIDA

Node Net Inef Node Net Inef Node Net Inef Node Net Inef

32M 8.5M 137M 4.3 12M 271M 8.5 96K 1.6G 51 799K 27G 867

256M 24M 1.0G 4.1 35M 2.0G 8.2 240K 32G 128 1.0M 273G 1091

1G 48M 4.1G 4.1 70M 8.1G 8.2 461K 246G 246 1.1M 1.2T 1219

32G 273M 128G 4.0 394M 258G 8.1 2.5M 42T 1346 1.5M 51T 1634

1T 1.5G 4.0T 4.0 2.2G 8.1T 8.1 13M 7.4P 7567 1.9M 2.1P 2147

Table 1: Table comparing the per-node communication (Node), the total network communication
(Net), and the network inefficiency ratio (Inef), for each of the four protocols, for a variety of
(unencoded) data sizes listed on the leftmost column. Here, K stands for KiB; similarly, M stands
for MiB, and so on.

FRIDA, while having very small node sizes, have very high network inefficiency: since every
node needs to either download commitments or additional proofs whose data cannot (at
least in any obvious way) be used to reconstruct the original data, a lot of the data is ‘pure’
overhead. In other words, the proofs or commitments, which make up most of the sampler’s
communication, serve only to prove that the data is correctly encoded, but cannot otherwise
be used for reconstructing the data itself.

5 Extensions

The ZODA protocol is relatively flexible in a number of ways we describe below. For example,
it is possible to, e.g., reduce node sizes at the cost of some (small amount of) overhead and
increased inefficiency, or use a variety of field sizes, depending on the desired application.

Succinct proofs. A simple alternative, which allows for smaller per-node cost at some
potentially increased network inefficiency, is to ‘wrap’ the ZODA sampler within a general
purpose succinct proof. This addition would allow samplers to retain the unique encoding
guarantee while sampling far fewer rows or columns. This, in turn, elides the need for a
decoder to have additional samples, since the succinct proof can be used to ensure that the
unique encoding condition holds directly. We note that this is, in theory, more efficient than
proving that the encoding was done correctly via a general-purpose succinct proof, while
providing very similar guarantees for samplers and decoders.

Field extension. In the proofs provided for the sampling and decoding algorithms, we
only make use of a single column being correctly encoded to receive the stated guarantees.
Barring potential future work showing that additional column samples contribute to a lower
error probability, it is possible to asymmetrically sample more rows than columns. If this is
the case, then we note that the only time that a large field needs to be used is in constructing
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the random diagonal matrix Dr̄ to guarantee low error probability. In this case, we can view
the matrix X̃ ∈ Fn×n′

and its encoding X = GX̃ ∈ Fm×n′
as having elements in some base

field F, while Y = X̃Dr̄G
′T ∈ F′n×m′

has elements in some field extension F′ ⊇ F. It is
then possible to trade off the field sizes to ensure that the error probability remains low
and the per-node communication is minimized, subject to this constraint. Note that this
does not result in a zero-overhead protocol since the field extension’s elements do not carry
additional information that can reconstruct the corresponding rows. On the other hand, this
construction is still, roughly, a drop-in replacement for the construction of [ASB18] since the
tensor code remains essentially unchanged. We explore this ZODA extension in appendix C.

ZODA Hadamard variation. If we do not seek a drop-in replacement for tensor codes, it
is possible to significantly improve the per-node communication at the cost of introducing a
small amount of additional overhead. In particular, as noted previously, only a single column
is used in guaranteeing that the matrix X decodes uniquely to some X̃. In this case, it is
possible to simply construct a small number of uniformly random vectors, stacked into the
columns of a matrix, G′

R, set Y = X̃G′T
R , and, essentially, run ZODA’s sampler directly. The

decoder functions very similarly to the one specified in §3.1.3 but can only reconstruct over
the received rows, unless GR is very large, which leads to impractical encoding times as the
original data (and therefore X̃) grows large. This modification also allows the use of smaller
field sizes, which results in additional savings, again at the cost of some network inefficiency.
Additionally, since the resulting code is not a tensor code, there are fewer ways to decode
the result and this decoding likely cannot be as easily distributed as vanilla ZODA, or its
field extension variation. We explore this Hadamard variation in appendix D.

Minimal samplers. Finally, we note that, as mentioned in the decoding algorithm, §3.1.3,
it suffices to either have sampled rows and columns ahead of time and receive m − d rows,
or to receive m−d/2 rows (versus m−d) and receive a single column. Since this is the case,
it is possible that individual samplers, which receive essentially no guarantees themselves,
sample a single row and a single column. In doing so, while they individually will get no
guarantee about unique encoding, etc., they are able to contribute samples which can later
be used to reconstruct the original data without this knowledge. Such a sampler would
have at least two orders of magnitude less communication than one which seeks to have the
unique encoding guarantee to 2−80 or so, while still contributing to network security. We
note that, with some additional work, it is similarly possible to decode over the columns if
enough columns (such as, say, m′ − d′ columns) are provided along with a (small number
of) rows, but some additional care has to be taken to ensure that the rows are known to be
(roughly) uniformly randomly sampled.

Conclusion

We have presented ZODA, a flexible protocol that allows a (tensor) code to function as a
proof of its own correct encoding with minimal additional computation and no additional
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storage. We’ve shown that ZODA remains sound even under adversarially selected samples
if only a small number of random samples are verified ahead of time. ZODA can function
as a drop-in replacement for the proof of encoding used in the data availability scheme
of [ASB18], which is deployed in the Celestia protocol, with stronger guarantees for the
sampler and without the need for redundant re-encoding by full nodes.

Future work. There are several questions that are left open by this work. First, are there
other zero-overhead proofs of encoding? In a recent note, [EMA24] show that the overhead
of the FRIDA protocol can be securely reduced, resulting in significantly lower network
inefficiency for a given node size. However, significant overhead remains as correlated queries
in all but the first FRI oracle convey no additional information that is useful for decoding.
Second, can additional column samples contribute to soundness in ZODA? A positive result
would allow for smaller field sizes, resulting in lower communication requirements for ZODA
nodes.
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A Checks

In this appendix, we prove the checks used in the proofs of guarantees for the protocol. We
call a check adversarial if the adversary is able to pick, from any part of the available data,
any subset they wish, after observing the randomness drawn from the distribution.

Zero check. The simplest check we use is the zero check. Given a code G ∈ Fm×n with
distance d and some vector x ∈ Fn, we have that

(Gx)r = 0 =⇒
p

x = 0,

where r is sampled uniformly from 1, . . . ,m, and p ≤ 1− d/m. This is relatively easy to see:
if x ̸= 0 then there are at least d elements which are nonzero (by the definition of distance),
hence the probability that we choose at least one of these elements is at least 1− d/m. We
commonly use the special case that G is the Hadamard matrix such that its rows contain
all possible tuples of Fn which means m = |F|n. (In this case, choosing a random row r
corresponds to choosing a uniformly random vector gr from Fn.) The distance of this matrix
is d = |F|n − |F|n−1 so the error probability p is bounded from above by

p ≤ 1− d

m
= 1− |F|

n − |F|n−1

|F|n
=

1

|F|
.

Adversarial zero check. The first adversarial check is the adversarial zero check. In this
check, we have a collection of k vectors x1, . . . , xk ∈ Fn and some code G ∈ Fm×n with
distance d. From the zero check above, we know that, for each i = 1, . . . , k:

(Gxi)r = 0 =⇒
p

xi = 0, (15)

where r is drawn uniformly from 1, . . . ,m, and p ≤ 1− d/m. In the adversarial zero check,
the index i is drawn after the random variable r is picked, which means, equivalently, that
this check must succeeds for any choice of ir. This is equivalent to saying that

(Gxir)r = 0 =⇒
kp

xir = 0,
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for any choice of index ir. This is easy to see from the zero check (15): this implication fails
if, and only if, there exists at least one i = 1, . . . , k, such that (Gxi)r = 0 yet xi ̸= 0. By the
union bound, this happens with probability no more than kp, which gives the claim. In the
special case of the Hadamard code, which we use in this paper, the distance is d = |F|n−1

and m = |F|n, so we have that p ≤ 1/|F| which gives the result.

Adversarial sparsity check. Similar to the previous check is the adversarial sparsity
check. The standard sparsity check is given in [EA23, §3.2.1], where we have a list of vectors
x1, . . . , xk ∈ Fn and some parameter q > 0. In this case, for any i = 1, . . . , k,

(xi)S = 0 =⇒
p

∥xi∥ < q, (16)

where S ⊆ {1, . . . , n} is uniformly randomly chosen with fixed size |S|, and

p ≤
(
1− q

n

)|S|
.

Similar to the adversarial variation of the previous check, the adversary is free to choose
any one of these k vectors after observing the randomness S. In a very similar way to the
previous, we would like to show that

(xiS)S = 0 =⇒
kp

∥xiS∥ < q.

This is also similarly easy to see: the probability that any one check fails for some xi is ≤ p
by (16). This means that the probability that there exists any xi for which the check fails is
no more than kp by the union bound, which completes the claim.

B Reed–Solomon has no zero entries outside of the

systematic block

One standard systematic encoding of a message x ∈ Fn′
into a codeword G′x ∈ Fm′

, where
the encoding G′ is systematic, is to view the message as a polynomial evaluated at m′

points, where the first n′ of these evaluations correspond to each symbol in the message. In
particular, let α1, . . . , αm′ ∈ F be some (fixed) evaluation points, and let f : F → F be the
unique degree n′ − 1 polynomial such that

f(αi) = xi, (17)

for i = 1, . . . , n′ (not m′). We can write this in terms of the Lagrange basis polynomials,
defined

ℓj(z) =
n′∏

i=1,i ̸=j

z − αi

αj − αi

. (18)
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These polynomials have the properties that (a) they are of degree n′ − 1, (b) that

ℓj(αi) =

{
1 αi = αj

0 otherwise,

for each i, j = 1, . . . , n′, and (c) they are nonzero when evaluated at any point which is not
one of α1, . . . , αn′ (and, in particular, nonzero when evaluated at any αn′+1, . . . , αm′) which
is easy to see from their definition (18), or the fact that any polynomial of degree n′− 1 has
at most n′ − 1 zeros. It is then clear that we can write

f(z) =
n′∑
i=1

xjℓj(z),

which is a (in fact the) degree n′ − 1 polynomial satisfying the definition (17). Finally, we
then set the codeword y ∈ Fm′

derived from a message x with corresponding polynomial f
to be

yi = f(αi),

for i = 1, . . . ,m′. Note, then, that we can write y = G′x, where G′ is defined as

G′
ij = ℓj(αi),

for i = 1, . . . ,m′ and j = 1, . . . , n′. This encoding is systematic as it can be written as

G′ =

[
I
P ′

]
where I is the identity (using the definition of the ℓj) and

P ′
ij = ℓj(αi+n′),

for i = 1, . . . ,m′ − n′ and j = 1, . . . , n′. From observation (c), the matrix P ′ contains no
entries that are zero, which is what we wished to prove.

C ZODA with field extension

As described in the extensions section, here we discuss the possibility of using ZODA where
the data is over some field F while the randomness is over some field extension F′ ⊇ F. As
mentioned in the proof in §3.2.2, to get full soundness for the subspace distance check, it suf-
fices to only sample a single column. If a ZODA decoder is only interested in reconstructing
over the rows, it can then sample |S| rows (to desired soundness) and a single column, which
would keep both p and p′ identical to those given in §3.1. (One might not want to do this
for other reasons. For example, it may be of interest to ZODA nodes to also guarantee that
unique decoding holds over the columns of Y as another possible way of reconstructing rows
of X, in which case we would like that |S| = |S ′|, as in the numerics presented for ZODA.)
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Block size 32MiB 256MiB 1GiB 32GiB 1TiB

Per-node communication 1.24MiB 3.35MiB 6.63MiB 37.1MiB 209MiB

Network communication 75MiB 570MiB 2.2GiB 69.6GiB 2.2TiB

Network inefficiency 2.4 2.23 2.2 2.2 2.2

Table 2: Per-node and total network communication along with network inefficiency, for ZODA
with field extensions.

Communication. It is also not hard to show the total communication costs in this setting,
which is mostly an exercise in bookkeeping. To begin, the sampler receives three commit-
ments, each of some size C: one for the rows of X, one for the columns of Y , and one for
the entries of Z. It also receives the randomness r̄ which consists of log2(m̄) = n log2(|F′|)
total bits if uniform, or consists of the size C of the commitment over the rows of X if using
Fiat–Shamir randomness. It then requests |S| rows of X and |S ′| columns of Y (which takes
|S| log2(m) bits and |S ′| log2(m′) bits, respectively), along and openings for each of these.
The opening of a Merkle proof of the rows of X (or columns of Y ) requires C log2(m) bits
(C log2(m

′)) for each row (column), which means that the total communication is

|S|(C log2(m) + n log(|F|)) + |S ′|(C log2(m
′) + n log2(|F′|)) + 3C.

bits for the |S| rows of X and the |S ′| columns of Y . Finally, the sampler requests |S||S ′|
elements of Z, which take a total of |S||S ′|(C log2(mm′)+ log2(|F′|)) bits. This gives a total
amount of communication, in bits, of

C(|S| log2(m) + |S ′| log2(m′) + |S||S ′| log2(mm′))︸ ︷︷ ︸
commitment total

+ |S|n log2(|F|) + |S ′|n′ log2(|F′|) + |S||S ′| log2(|F′|)︸ ︷︷ ︸
elements total

.

The total amount of communication is listed in table 2 for |F| = 28 and extension |F′| = 2128,
with n = n′, dimensions m = 4n and m′ = 2n, and G and G′ are Reed–Solomon codes.

Discussion. We note that the figures here are substantially smaller than vanilla ZODA for
two reasons: the first is that we are only sampling over rows, which means that the network
inefficiency should be roughly cut by half, since only half of the data is being transmitted
in the first place. (This is not exactly true since the single transmitted column is somewhat
large with respect to the row size, but is close enough to be a good guide.) If the protocol
was indeed zero overhead, we would see that the network inefficiency should tend to a factor
of ∼ 2, instead here it can be shown to be bounded from below by 2.1. Second, we cannot
reconstruct using the columns with the minimum number of samplers needed to guarantee
reconstruction over the rows. This is relatively easy to see using the bound (13) which
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will in general have the number of nodes needed (which sample only one column each) be
substantially smaller than the total number of columns needed to reconstruct. As in vanilla
ZODA, there is nothing preventing other nodes, which do sample both columns and rows for
reconstruction, from existing in this set up, at potentially increased network communication.

D Hadamard variation

In this section, we describe a Hadamard variation of the ZODA protocol, which is very similar
in spirit to the original Ligero protocol, that has similar guarantees to ZODA. From before,
this construction results from applying the observations of [EMA24] to a similar construction
to that of [HSW23] and ZODA. This Hadamard variation results in less total communication
that ZODA, but is not zero-overhead: the sampled columns are only used in verifying that
the row encodings were correct, but have no obvious way of being used to reconstruct the
data otherwise. (Indeed, one can prove that they cannot be used to aid in reconstructing
X̃, unless there are enough columns to reconstruct all of X̃, which is easily seen from the
general solution to the matrix system GX̃ = X and X̃G′T = Y over X̃, for given G, G′,
X, and Y of appropriate dimensions.) Additionally, it cannot be used as a drop-in scheme
to many of the data availability schemes used in practice today, since sampling can only be
done, roughly speaking, over the rows.

Codes. As before, set G ∈ Fm×n to be some linear code (we will not use a second code in
this case).

Encoding algorithm. The encoder is very similar to the ZODA encoder. Specifically, it
begins with some data X̃ ∈ Fn×n′

, then performs the following steps:

1. Encode X̃ to get X = GX̃

2. Commit to the rows of X

3. Receive some uniformly random G′
R ∈ Fm′×n′

matrix

4. Compute Y = X̃G′T
R

5. Commit to the columns of Y

Note that the uniform randomness is public-coin and hence may be derived from Fiat–Shamir
randomness using, for example, the commitment to the rows of X. Additionally, note that
m′ can be very small. (For example, in our experiments, we choose m′ = 2 which suffices for
80 bits of security.)

32



Sampling algorithm. Let g′j be the jth column of G′
R, which is publicly known. The

sampler then, as before, performs the following steps:

1. Sample S ⊆ {1, . . . ,m} of some (fixed) size |S|

2. Sample S ′ ⊆ {1, . . . , k} of some (fixed) size |S ′|

3. Receive the S rows of X, written XS, from the encoder

4. Receive the S ′ columns of Y , call them yj for every j ∈ S ′, from the encoder

5. Check XSg
′
j = (Gyj)S for every j ∈ S ′

Similar to ZODA, the sampler does not accept if either it fails to receive all requested rows
or columns, or any of the checks do not pass.

Decoding algorithm. Similar to the previous, we assume that the sampler algorithm has
been run before the decoding algorithm has and that the rows and columns received there
are present in S and S ′, respectively. In particular, if the number of rows that the decoding
algorithm has received is at least |S| > m−d, where d is the distance of G, then the decoder
can use any erasure decoding algorithm to reconstruct X̃ with high probability.

1. Verify that XSg
′
j = GSyj for each j ∈ S ′

2. Decode GSX̃ = XS via any erasure decoding algorithm for G

Again, as with ZODA, if the number of rows indices in S which pass is smaller than m− d,
the decoding algorithm does not accept.

Completeness. Completeness is again clear from plugging in definitions.

Unique decoding. The proof of unique decoding is very similar to the one presented
in §3.2.2. We only give the error bound here. Let p′ be the error probability of the subspace
distance check of (5), which depends on the code G and q and p = (1 − q/m)|S|, then the
error is bounded by

p|S
′| + p′.

Adversarial decoding. The proof again is very similar to that of adversarial decoding,
and the corresponding error is

p|S
′| + p′ +

(
m

|F|

)|S′|

.
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Block size 32MB 256MB 1GB 32GB 1TB

Per-node communication 572KiB 1.48MiB 2.91MiB 16.1MiB 91MB

Network communication 110MiB 825MiB 3.2GiB 99GiB 3.1TiB

Network inefficiency 3.4 3.2 3.2 3.1 3.1

Table 3: Per-node and total network communication along with network inefficiency, for ZODA’s
Hadamard variation.

Total communication cost. Tallying the total communication cost is very similar to that
of ZODA and similar tricks, such as the field extension trick used there, can also be used
here. We present some basic results in table 3 where G is a Reed–Solomon code of rate 1/4,
the field is |F| = 4 and its extension is |F′| = 264; the sampler sets |S ′| = k = 2. It is of
interest that the network inefficiency for the Hadamard variation of ZODA is lower than that
of vanilla ZODA, even though the Hadamard variation is not zero-overhead; this is because,
in ZODA, every node samples both rows and columns, while in the Hadamard variation,
every nodes samples mostly rows (and, say, two columns). While these sampled columns
are pure overhead, as they cannot be used to reconstruct the original data, this asymmetric
sampling reduces the network overhead at the cost of only being able to reconstruct over
row samples. This, in turn, likely prevents good distributed reconstruction algorithms over
the Hadamard variation, in contrast to vanilla ZODA or its field extension variation, where
such algorithms can use both columns and rows for reconstruction.

E Data availability sampling scheme

We construct a DAS scheme in the random oracle model (ROM) that satisfies the interface
and security properties defined in [HSW23, Def. 1].

Construction. For the sake of convenience, we rewrite the definitions used in this paper
in terms of a security parameter λ, to match the definitions of [HSW23], below. When
reasonable, we attempt to match the notation of that paper in this appendix to aid the
reader.

• Finite field F such that |F| > 2λ

• Data X̃ ∈ Fn×n′

• Code G ∈ Fm×n with distance d

• Code G′ ∈ Fm′×n′
with distance d′

• Random oracle ρ : {0, 1}∗ → Fn′

• Parameter qS ∈ N that denotes the number of sampled rows
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• Setup(1λ)→ ck: Return ck = ⊥.
• Encode(data)→ (π, com): Run the encoding algorithm of §3.1.1, where we let:

– πX ∈ (Fn′
)m denote the vector where the i-th element is the i-th row of X

and rtX denote its Merkle commitment,

– πY ∈ (Fn)m
′
denote the vector where the i-th element is the i-th column of Y

and rtY denote its Merkle commitment,

– πZ ∈ F(m·m′) denote the vector of individual elements of Z and rtZ denote its
Merkle commitment.

The randomness required in step 2 of the encoding procedure is obtained from the
random oracle: ḡr̄ ← ρ(rtX). Return (π = (πX , πY , πZ), com = (rtX , rtY , rtZ)).

• V = (V1,V2):

– V1(com) → tran: Run steps 1-4 of the sampling algorithm of §3.1.2 with
|S| = qS and |S ′| = qS′ and output the sampled rows of X, columns of Y and
elements of Z along with the necessary Merkle opening proofs.

– V2(com, tran) → b: Compute ḡr̄ ← ρ(rtX), verify all Merkle opening proofs
and return ⊥ if at least one fails. Run steps 5-6 of the sampling algorithm
of §3.1.2.

• Ext(com, {trani}ℓi=1): Compute ḡr̄ ← ρ(rtX) and run steps 1-3 of the decoding
algorithm of §3.1.3.

Figure 1: Adapting the ZODA protocol to the framework of [HSW23]

• Parameter qS′ ∈ N that denotes the number of sampled columns

• Threshold of verifiers T ∈ N

The DAS scheme can then be defined, using the definitions of [HSW23], as the tuple of al-
gorithms ZODA = (Setup,Encode,V,Ext) presented in figure 1. As required by the definition
of [HSW23], (Setup,V2) are probabilistic polynomial time algorithms and (Encode,V1,Ext)
are deterministic polynomial time algorithms.

Index sampler. We use the notion of an index sampler introduced in [HSW23, Def. 12].
Our index sampler can be seen as two parallel executions of the “sampling with replacement”
algorithm: one for sampling rows, the other for sampling columns. Let νwr : N4 → [0, 1]
denote the quality of the “sampling with replacement” sampler computed in (12). Let
ν : N7 → [0, 1] denote the quality of the joint-row-and-column sampler. The joint sampler
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fails to output enough rows and columns simultaneously if and only if both the row-index
samplers and the column-index sampler fail to output enough distinct indices. Taking the
probability of the intersection of independent events, it holds that:

ν(m, d, qS,m
′, d′, qS′ , ℓ) = νwr(m− d,m, qS, ℓ) · νwr(m′ − d′,m′, qS′ , ℓ), (19)

where

νwr(m− d,m, qS, ℓ) =
m−d∑
t=1

(
m

t

)(
t

m

)qSℓ

.

(Note that this is the same quantity as (12), so an identical bound holds.)

E.1 Completeness

By the completeness property of §3.2.1, it follows that running V for some honestly encoded
data X̃ will always return 1. Therefore, Ext will only abort and fail to return X̃ if the verifiers
jointly sampled fewer than m− d rows of X and m′ − d′ columns of Y . Let ℓ = poly(λ) be
the number of verifiers and NotEnough denote the event in which the verifiers fails to sample
enough rows and columns. By definition of the quality of an index sampler,

Pr[NotEnough] ≤ ν(m, d, qS,m
′, d′, qS′ , ℓ),

where ν is computed as in (19).

E.2 Soundness

Let AdvsoundA,ℓ,ZODA(λ) denote the advantage of an adversary A against the soundness experiment
as defined in [HSW23] run for the protocol ZODA and an integer ℓ = poly(λ) such that ℓ > T .
We show that this advantage is negligible in λ.

Proof. To see this, assume that ℓ ≥ T . Recall that soundness as defined in [HSW23],
requires that the probability that ℓ executions of V = (V1,V2) all output 1 and the extractor
outputs ⊥ is negligible.

Let B denote the adversary that opens Merkle commitments honestly and otherwise
behaves identically to A. Let AdvMerkle

A (λ) denote the probability of that A breaks the
binding property of the Merkle commitment scheme for either if the vectors πX , πY , or πZ .
By the binding property of the Merkle commitment, it holds that

AdvsoundA,ℓ,ZODA(λ) ≤ AdvsoundB,ℓ,ZODA(λ) + AdvMerkle
A (λ).

By definition of Ext, the adversary B wins if and only if one of the following events occurs:

• CheckFails: all ℓ executions of V output 1 and the check performed in step 1 of the
decoding algorithm fails.
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• NotEnough: all ℓ executions of V output 1 and the verifiers jointly sampled fewer than
m− d rows of X and m′ − d′ columns of Y .

Therefore, taking a union bound over the probability of these events occurring:

AdvsoundB,ℓ,ZODA(λ) ≤ Pr[CheckFails] + Pr[NotEnough].

The probability Pr[NotEnough] is given in (19), so we can now focus on the event CheckFails.

CheckFails event. Consider two cases:

1. CheckFails ∧ Close: all ℓ executions of V output 1, the decoder’s check fails and X is
close to a unique encoding of some piece of data X̃

2. CheckFails ∧ Close: all ℓ executions of V output 1, the decoder’s check fails and X is
not close to a unique encoding of some piece of data X̃.

The probability of CheckFails is the sum of the probabilities of the above two events. By the
unique decoding property §3.2.2, a single verifier’s check does not erroneously pass, except
with probability p+ p′, hence at least one check fails except with probability at most

Pr[CheckFails ∧ Close] ≤ p+ p′.

(This probability can be improved, but suffices for our cases.) Consider now the case
CheckFails∧Close. If the union of all transcripts only contains rows and columns that are sam-
pled from the unique close encoding of the underlying data, then by the completeness prop-
erty of the decoding algorithm (§3.2.1), the check will not fail. Therefore if CheckFails∧Close
occurs, then it must be the case that there exists at least one row (or column) in the union
of all transcripts that is not equal to the corresponding row (or column) in the unique closest
correct encoding of the data. By the correct encoding property (§3.2.3), we know that each
verifier’s transcript only contains rows and columns that are sampled from the unique close
encoding of the underlying data, except with probability p + p′. Therefore, taking a union
bound over all samplers,

Pr[CheckFails ∧ Close] ≤ ℓ(p+ p′)

Putting everything together, we have shown that

AdvsoundA,ℓ,ZODA(λ) ≤ (ℓ+ 1)(p+ p′) + ν(m, d, qS,m
′, d′, qS′ , ℓ) + AdvMerkle

A (λ)

E.3 Consistency

Consistency is closely related to the adversarial reconstruction property of §3.2.4. Adversarial
reconstruction states the following: “if the encoding X is close to a unique encoding under
G, then the decoding algorithm (and therefore Ext) will either abort, or output the unique
data associated with the closest encoding with probability p + p′ +m/|F| if reconstructing
over the rows, or m′p+ p′ if reconstructing over the columns”.
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Direct guarantee. Obtaining the guarantee that X is close to a unique encoding under
G can be done in multiple ways. The trivial method requires Ext to collect more than m− q
rows (where q < d/2 if using a Reed–Solomon code for G and q < d/3 for general codes)
and check that these rows are consistent with the encoding of at least one column. This
suffices to reconstruct a unique X̃ for the same reasons stated in the discussion of §3.1.3.
We note that this directly satisfies the conditions of consistency, where the error probability
is no more than p+m/|F|.

Relaxations. Though it is possible to get a guarantee of the same form as that of [HSW23]
without additional overhead, note that we only get this guarantee over the rows. This
requires more samples than would be necessary to erasure decode. (We suspect it may be
possible to get a similar guarantee given, say m′ − q′ such columns, but leave this for future
work.) On the other hand, there are many reasonable, and practical, relaxations of the
definition of consistency which allow us to have even more efficient methods for decoding (or
‘extracting’, in the parlance of [HSW23]).

One way of doing this is to allow the extractor to assume that at least one transcript
is honest. This can be practically achieved in multiple ways: the extractor itself could do
its own sampling from the network; the extractor could be given a succinct proof that one
of the transcripts is correct; or, perhaps, the extractor could be given a transcript that has
verifiable randomness. (The definition and algorithms of [HSW23,HSW24] assume this latter
case, essentially, and ensure that every node and every transcript contains this proof, which
we note is pure overhead as, in our case, it suffices only to have one.) In any case, our
definition of the decoding algorithm, and its adversarial decoding property, ensure that such
a ‘relaxed’ extractor outputs the correct X̃ given enough (potentially adversarially-selected)
transcripts with enough rows or columns.
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