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Introduction Motivation 
A popular game in Latin-America, dominoes is a 
four player, team-based, zero-sum, imperfect 
information game of strategy with relatively 
simple rules, making it it ideal for attack with 
modern algorithmic and approximation tools. In 
general, it should be noted that the game suffers 
heavily from combinatorial explosion throughout 
the crucial opening rounds. Here, we propose an 
algorithm to find a good lower-bound to the 
expectation of a given move for the computer 
player in order to compute an optimal move."

Imperfect information 
Games of imperfect information are games in 
which some players have information that other 
players are unable to see, though the game’s 
structure and payoffs are common knowledge. 
There has been some work on reducing the 
problem of imperfect information to many 
problem of perfect information, most famously 
in the Perfect Information Monte Carlo (PIMC) 
algorithm[1], though other algorithms have been 
proposed[2][3] which either perform a similar 
reduction or which can solve for an exact Nash 
equilibrium."

Imperfect minimax search 
Using the usual idea of minimax and allowing 
possible moves to be discounted by their current 
probabilities, we arrive at a simple heuristic for 
approximating the order of some given dominos 
play using techniques for perfect information 
games. We call this approximation the 
Imperfect Minimax Search (IMS)."

References 

IMS is motivated by a few notions: "
1.  Each move’s score should be discounted by 

the probability of being possible—leading to 
a notion of ‘most likely moves’"

2.  This reduction allows the use of alpha-beta 
pruning and also allows approximation 
techniques of complete-information games 
without the need to resort to expensive 
sampling algorithms."

Imperfect minimax search algorithm 
1: procedure ImperfectMinimaxSearch(G, p, d)
2: if G is finished or d = 0 then

3: return Evaluate(G, p)
4: end if

5: s
max

 �1
6: for m 2 supp (PG(·|p)) such that m is valid in G do

7: q  PG(m|p)
8: G0  G updated with move by m played by p
9: p0  next player after p performs m in game G

10: s
max

 max{s
max

, q · ImperfectMinimaxSearch(G0, p0, d� 1)}
11: end for

12: return s
max

13: end procedure

Results 
Using the above algorithm and a deepened search after each turn, we received the 
following results for a team of AI versus a team of the simplest non-trivial strategy: 
greedy—i.e. dump the domino with the highest value."

We iteratively deepened the search every N/4 plays in an exponential fashion (as 
the number of possible moves exponentially decreased) and left it as a tunable 
parameter. The depth was of the form"

D = ↵2�b
N
4 c

where we allowed α=6, β=1/2."

Further Thoughts 
The algorithm, for all of its simplicity, performs 
quite well against non-trivial opponents. In 
particular, it was highly sensitive to the 
parameters of the depth, leading us to believe 
that the evaluation function (in our case, the 
difference of the expectation of the sum of pips 
between both players) could be further 
improved."
Overall, we believe that PIMC might perform 
better given unbiased sampling. It’s not obvious 
how to do this efficiently, though."
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