
Solving the Convex Flow Problem

Theo Diamandis Guillermo Angeris

March 2024

Abstract

In this paper, we introduce the solver ConvexFlows for the convex �ow problem

�rst de�ned in the authors' previous work. In this problem, we aim to optimize a

concave utility function depending on the �ows over a graph. However, unlike the classic

network �ows literature, we also allow for a concave relationship between the input

and output �ows of edges. This nonlinear gain describes many physical phenomena,

including losses in power network transmission lines. We outline an e�cient algorithm

for solving this problem which parallelizes over the graph edges. We provide an open

source implementation of this algorithm in the Julia programming language package

ConvexFlows.jl. This package includes an interface to easily specify these �ow

problems. We conclude by walking through an example of solving the optimal power

�ow using ConvexFlows.

1 Introduction

Theorists and practitioners both apply network �ow models to describe, analyze, and solve
problems from many domains�from routing trucks to routing bits. For linear �ows, an
extensive academic literature developed the associated theory, algorithms, and applications.
(See, e.g., [AMO88], [Wil19], and references therein.) However, these linear models often
fail to describe real systems. For example, in electrical systems, the power lost increases as
more power is transmitted; in communications systems, the message failure rate increases as
more messages are transmitted; and, in �nancial systems, the price of an asset increases as
more of that asset is purchased. In each of these cases, the output of the system is a concave
function of its input.

In this work, we focus on solving this more general convex �ow problem, an important spe-
cial case of the authors' previous work [DAE24], and provide a package with a clean interface
to do so. Although this problem is a convex optimization problem, for which many open-
source and commercial solvers exist, the convex �ow problem has additional structure that
can be exploited. Following this prior work [DAE24], we use a dual decomposition approach,
which allows us to decompose the problem over the network edges. In contrast with the pre-
vious approach, though, we solve this problem using the Broyden�Fletcher�Goldfarb�Shanno
(BFGS) method [NW06, �6]. This method has been shown to be robust against non-smooth

1

objective functions [LO13] that often appear in practical instances of the convex �ow prob-
lem. To specify these problems, we provide an easy-to-use interface that, unlike in previous
work, does not require specifying conjugate functions or the support functions for feasible
sets. We provide an open-source implementation of the method and this interface in the Julia
programming languagewith extensive documentation. We conclude with two optimal power
�ow examples and associated numerical experiments. Additional examples are available in
the ConvexFlows documentation. All code is available online at

https://github.com/tjdiamandis/ConvexFlows.jl.

2 The convex �ow problem

We consider a directed graph with n nodes and m edges. Each edge, i = 1, . . . ,m, in the
graph has an associated strictly concave, nondecreasing gain function hi : R+ → R+∪{−∞},
which denotes the output �ow hi(z) of edge i given some input �ow z ∈ R+. (We assume
strict concavity, but this can be achieved generally by, say, subtracting a small quadratic
term from the gain function.) We use in�nite values to encode constraints: an input �ow z
over edge i such that hi(z) = −∞ is unacceptable. We denote the �ow across the edge by
the vector xi ∈ R2, where x1 ≤ 0 is the �ow into edge (equivalently, out of edge i's source
node) i and x2 ≥ 0 is the �ow out of the edge (equivalently, into edge i's terminal node).
These �ows are connected by the relationship

x2 = hi(−x1).

With each edge i we associate a matrix Ai ∈ {0, 1}n×2 that maps the `local' indices of nodes
to their global indices. More speci�cally, if edge i connects node j to node j′, then we de�ne
Ai =

[
ej ej′

]
, where ej denotes the jth unit basis vector. After mapping each edge �ow

to the global index and summing across all edges, we obtain the net �ow vector y ∈ Rn,
de�ned as

y =
m∑
i=1

Aixi.

If yj > 0, then this node has �ow coming into it and is called a sink. If yj < 0, then this
node provides �ow to the network and is called a source.

In the convex �ow problem, we aim to maximize some utility function U : Rn → R ∪
{−∞} over all feasible net �ows y. In�nite values again denote constraints: any �ow with
U(y) = −∞ is unacceptable. We require this utility function to be strictly concave and
strictly increasing. (The nondecreasing utility case also follows directly from this setup but
requires some additional care.) The convex �ow problem is

maximize U(y)

subject to y =
∑m

i=1Aixi

(xi)2 ≤ hi (−(xi)1) , i = 1, . . . ,m.

(1)

2

https://github.com/tjdiamandis/ConvexFlows.jl

w

h(w)

T

z1

z2

Figure 1: A concave gain function h with implicitly bounded domain (left), and the corresponding

set of allowable �ows (right).

An important consequence of this setup is that a solution {x⋆
i } to (1) will always saturate

edge inequality constraints; i.e., (x⋆
i)2 = h(−(x⋆

i)1). To see this, note that any �ow xi

satisfying (xi)2 < h (−(xi)1), can have its second component increased to (xi)2 + ε for some
ε > 0. Since U is strictly increasing in y, and y is (elementwise) strictly increasing in the xi,
this change would increase the objective value, so these �ows xi could not have been optimal.

In what follows, we will call a �ow xi over edge i an allowable �ow if it satis�es the
constraint in (1):

(xi)2 ≤ hi(−(xi)1).

Note that in prior work [DAE24], we instead de�ned a closed convex set of allowable �ows
Ti for each edge i. This set can be constructed directly from the inequality above; �gure 1
shows an example.

3 Dual problem

Observe that the convex �ow problem (1) only has one constraint coupling the edge �ows
xi. This structure suggests that we should relax the linear equality constraint to a penalty
and consider the resulting dual problem [BV04, �5.2]:

minimize Ū(ν) +
m∑
i=1

fi(A
T
i ν). (2)

The only variable in this problem is ν ∈ Rn and the functions Ū and fi are de�ned

Ū(ν) = sup
y
(U(y)− νTy), (3a)

fi(η) = sup
w≥0

(−η1w + η2h(w)), (3b)

3

for i = 1, . . . ,m. Note that Ū(ν) = (−U)∗(−ν) is the is the Fenchel conjugate [BV04, �3.3]
of −U with a negated argument, while fi is essentially the support function for the set

{(z1, z2) | z2 ≤ hi(−z1)},

if η ≥ 0. This fact follows from problem (2) if AT
i ν ≥ 0 for all i, or, equivalently, if ν ≥ 0,

which we show next.

3.1 Properties

Assuming that there exists a point in the relative interior of the feasible set (Slater's con-
dition), the dual problem (2) has the same optimal value as the primal problem (1). This
assumption typically holds in practice, so we will focus on solving (2). We will show two
things: �rst, that any optimal ν⋆ is nonnegative (and, indeed, that ν⋆ > 0) since U is strictly
increasing, and, second, that, given ν solving (2), the solutions to the subproblems (3) are
feasible for the primal problem and therefore optimal. The �rst fact will be useful in solving
the dual problem, while the second fact will imply that, by solving the dual problem (2), we
can recover a solution to the original problem (1).

First, let y be any point with U(y) > −∞. If νj < 0 for some j, we would have

Ū(ν) ≥ U(y + tej)− (y + tej)
Tν ≥ U(y)− νTy − tνj → ∞.

as t → ∞, where, in the second inequality, we have used the fact that U is increasing.
Therefore, for Ū(ν) to be �nite, we must have ν ≥ 0. We will show soon that the second
claim implies that any optimal dual variables satisfy ν > 0, if the primal problem (1) has a
�nite solution.

For the second claim: it is not hard to show that Ū and fi are di�erentiable, when �nite,
since U and the hi are strictly concave [Roc70, Thm. 25.1]. Let ν⋆ be dual optimal, then the
�rst order optimality conditions applied to problem (2) give

−y⋆(ν⋆) +
m∑
i=1

Aix
⋆
i (ν

⋆) = 0, (4)

where
y⋆(ν) = ∇Ū(ν)

is the maximizer for subproblem (3a) and

x⋆
i (ν) = ∇fi(A

T
i ν) = (−w⋆(ν), h(w⋆(ν))),

where w⋆ is the maximizer for subproblem (3b). Since these points are feasible for (1) then
they must also be optimal.

Finally, if (1) has a �nite solution y⋆, then the �rst-order optimality condition for (3a)
means that ∇U(y⋆) = ν⋆. But, since U is strictly increasing, we have that ∇U(y⋆) > 0 so
ν⋆ > 0 as required.

4

3.2 Solving the dual problem

The fact that ν⋆ > 0 suggests a natural way of modifying a solution method to respect
this constraint: we simply modify a line search to ensure ν remains positive. Speci�cally,
we add an upper bound on the step size which ensures that every iterate remains strictly
positive. This approach keeps the problem otherwise unconstrained, which simpli�es solution
methods.

For small to medium-sized problems, we use the quasi-Newton method BFGS, which has
been shown to work well for nonsmooth problems [LO13]. We use the bracketing line search
from Lewis and Overton [LO13], modi�ed to prevent steps outside of the positive orthant,
which also ensures that the step size satis�es the weak Wolfe conditions. (We note that
ConvexFlows also includes an interface to L-BFGS-B [Byr+95; Zhu+97; MN11] for larger
problems, but this interface requires more a more sophisticated problem speci�cation, and
this method may be less robust to nonsmoothness in the problem [AO21].)

Importantly, evaluating the dual objective function and its gradient (4) parallelizes across
all the edges, and each individual subproblem can be solved very quickly�often in closed
form. This observation suggests a natural interface to specify the convex �ow problem: we
only need a means of evaluating the subproblems and computing their maximizers. Given
user-speci�ed utility and gain functions, our software automatically computes these subprob-
lem evaluations.

4 Interface

It is unreasonable to expect most users to directly specify conjugate-like functions and solu-
tions to convex optimization problems as in (3a) and (3b). Instead, we develop an interface
that allows the user to specify the utility function U and the edge gain functions hi for
each edge i = 1, . . . ,m. With this, and the previous discussion, we can now solve the dual
problem and, from there, recover a primal optimal solution.

4.1 The �rst subproblem

The �rst subproblem (3a) typically has a closed form expression. Since, from before, Ū(ν) =
(−U)∗(−ν), where U∗ denotes the Fenchel conjugate of U , we can use standard results in
conjugate function calculus to compute Ū from a number of simpler `atoms'. For example,
U is often separable, in which case we have that U(y) = u1(y1) + · · ·+ un(yn), so

Ū(y) = ū1(y1) + · · ·+ ūn(yn),

where ūj is de�ned identically to (3a). Our package ConvexFlows provides atoms that
a user can use to construct U . Some examples of scalar utility atoms include the linear,
nonnegative linear, and nonpositive quadratic atoms. We also provide a number of cost
functions, including nonnegative quadratic cost. Note that, since U is increasing, we can
support lower bounds on the variables but not upper bounds.

5

While it is most e�cient to build U (and therefore Ū) from known atoms, more general
functions without constraints may be handled by solving (3a) directly. A vector ỹ achieving
the supremum must satisfy ∇U(ỹ) = ν. This equation may be solved via Newton's method,
and the gradient and Hessian may be computed via automatic di�erentiation.

We can also incorporate constraints by writing U as the solution to a conic optimization
problem, which may be expressed using a modeling language such as JuMP [DHL17; Lub+23]
or Convex.jl [Ude+14], both of which can compile problems into a standard conic form
using MathOptInterface.jl [Leg+21].

4.2 The second subproblem

For each edge i we require the user to specify the gain function hi in native Julia code.
Denote the solution point of the second problem (3b) by w⋆. We write h+(w) and h−(w) for
the right and left derivatives of h at w, respectively. Speci�cally, we de�ne

h+(w) = lim
δ→0+

h(w + δ)− h(w)

δ
,

and h−(w) analogously. The optimality conditions for problem (3b) are then that w⋆ is a
solution if, and only if,

h+(w⋆) ≤ η1/η2 ≤ h−(w⋆). (5)

(We may assume η2 > 0 from the previous discussion, since ν > 0.) Note that the optimality
condition suggests a simple method to check if an edge will be used at all: zero �ow is
optimal if and only if

h+(0) ≤ η1/η2 ≤ h−(0).

This `no �ow condition' is often much easier to check in practice than solving the complete
subproblem.

If the zero �ow is not optimal, then we can solve (3b) via a one-dimensional root-�nding
method. We assume that h is di�erentiable almost everywhere (e.g., h is a piecewise smooth
function) and use bisection search or Newton's method to �nd a w⋆ that satis�es (5). Since we
use directed edges, and typically an upper bound b on the �ow exists for physical systems,
we begin with the bounds (0, b) and terminate after log2(b/ε) iterations. (If no bound is
speci�ed, an upper bound b may be computed with, for example, a doubling method.) We
compute the �rst derivative of h using forward mode automatic di�erentiation, implemented
in ForwardDiff.jl [RLP16]. Computing a derivative can be done simultaneously with a
function evaluation and, as a result, these subproblems can typically be solved very quickly.
Alternatively, the user may specify a closed-form solution to the subproblem, which exists
for many problems in practice (see, for example, the examples in [DAE24, �6].)

5 Example: optimal power �ow

We adapt the optimal power �ow example of [DAE24, �3.2]. This problem seeks to �nd
a cost-minimizing plan to generate power, which may be transmitted over a network of m

6

3

2

1

3

2

1

3

2

1

t = 1 t = t′ t = T

Figure 2: Graph representation of a power network with three nodes over time. Each solid line

corresponds to a transmission line edge, and each dashed line corresponds to a storage edge.

transmission lines, to satisfy the power demand of n regions over some number of time periods
T . We use the transport model for power networks along with a nonlinear transmission line
loss function from [Stu19], which results in a good approximation of the DC power �ow
model.

The loss function models the phenomenon that, as more power is transmitted along a
line, the line dissipates an increasing fraction of the power transmitted. Following [Stu19,
�2], we use the convex, increasing loss function

ℓi(w) = αi (log(1 + exp(βiw))− log 2)− 2w,

where αi and βi are known constants for each line and satisfy αiβi = 4. The gain function
of a line with input w can then be written as

hi(w) = w − ℓi(w).

Each line i also has a maximum capacity, given by bi. Figure 1 shows a power line gain
function and its corresponding set of allowable �ows.

Each node j may also store power generated at time t for use at time t+1. If w units are
stored, then γjw units are available at time t+1 for some γj ∈ [0, 1]. These parameters may
describe, for example, the battery storage e�ciency. We model this setup by introducing
T nodes in the graph for each node, with an edge from the tth node to the (t + 1)th node
corresponding to node j with the appropriate linear gain function, as depicted in �gure 2.
(Note that, for numerical stability, we subtract a small quadratic term, (ε/2)w2, from the
linear gain functions, where ε is very small.)

At time t = 1, . . . , T , node j = 1, . . . , n demands dtj units of power and can generate
power pj at a cost cj : R → R+, given by

cj(p) =

{
(κj/2)p

2 p ≥ 0

0 p < 0,

which is a convex, increasing function parameterized by κj > 0. Power dissipation has no
cost but also generates no pro�t. To meet demand, we must have that, for each t = 1, . . . , T ,

dt = pt + yt, where yt =
m∑
i=1

Aixti.

7

In other words, the power produced, plus the net �ow of power, must satisfy the demand in
each node. We write the network utility function as

U(y) =
T∑
t=1

n∑
j=1

−cj(dtj − ytj). (6)

Since ci is convex and nondecreasing in its argument, the utility function U is concave and
nondecreasing in y. This problem can then be cast as a special case of (1).

Note that the subproblems associated with the optimal power �ow problem may be
worked out in closed form. The �rst subproblem is

Ū(ν) =
T∑
t=1

n∑
j=1

(
ν2
tj

2κj

− dtjνtj

)
,

with domain ν ≥ 0. The second subproblem is

fi(ηi) = sup
0≤w≤bi

{−η1w + η2 (w − ℓi(w))} .

Using the �rst order optimality conditions, we can compute the solution:

w⋆
i =

(
β−1
i log

(
3η2 − η1
η2 + η1

))
[0,bi]

,

where (·)[0,bi] denotes the projection onto the interval [0, bi]. These closed form solutions can
be directly speci�ed by the user in ConvexFlows for increased e�ciency.

5.1 Numerical examples

5.1.1 Multi-period power generation example

We �rst consider an example network with three nodes over a time period of 5 days. The
�rst two nodes are users who consume power and have a sinusoidal demand with a period of
1 day. These users may generate power at a very high cost (κj = 100). The third node is a
generator, which may generate power at a low cost (κj = 1) and demands no power for itself.
We equip the second user with a battery, which can store power between time periods with
e�ciency γ = 1.0. For each transmission line, we set αi = 16 and βi = 1/4. The network
has a total of 360 nodes and 359 edges. The full code can be found in appendix B.

We display the minimum cost power generation schedule in �gure 3. Notice that during
period of high demand, the �rst user must generate power at a high cost. The second user,
on the other hand, purchases more power during periods of low demand to charge their
battery and then uses this stored power during periods of high demand. As a result, the
power purchased by this user stays roughly constant over time, after some initial charging.

8

Figure 3: Power generated (top), power used by the �rst node (middle) and by the second node,

which has a battery (bottom).

5.1.2 Larger network

We next consider the network from [Kra+13], generated using the same parameters. We use
n = 100 nodes and T = 2 time periods. For each time period t, we draw the demand dit for
each node uniformly at random from [1, 5]. For each transmission line, we again set αi = 16
and βi = 1/4. Each transmission line has maximum capacity drawn uniformly at random
from the set {1, 2, 3}. A line with maximum capacity 1 operating at full capacity will loose
about 10% of the power transmitted, whereas a line with maximum capacity 3 will loose

9

almost 40% of the power transmitted (cf., �gure 1). We let all lines be bidirectional: if there
is a line connecting node j to node j′, we add a line connecting node j′ to node j with the
same parameters. For each node, we allow it to store power with probability 1/2 and then
draw its e�ciency parameter γj uniformly at random from [0.5, 1.0]. In this setup, there are
a total of 452 edges. See appendix A.1 for example code.

Figure 4 shows the convergence of our method on the optimal power �ow problem for this
network. The primal feasible point used to compute the relative duality gap is constructed
as

ŷ =
m∑
i=1

Aix̃i,

where x̃i solves the subproblem (3b) with the current iterate νk. There is a clear linear
convergence region, followed by quadratic convergence, similar to Newton's method. We
note that L-BFGS does not exhibit good convergence on our problem, which is consistent to
the results in [AO21]. (See [DAE24, �6.1] for additional examples using L-BFGS-B to solve
the convex �ow problem on very large networks.)

Figure 4: Convergence of ConvexFlows with n = 100. The primal residual measures the net

�ow constraint violation, with {xi} from (3b) and y from (3a).

6 Conclusion

This paper introduces the software package ConvexFlows for solving the convex �ow prob-
lem de�ned in [DAE24]. This package provides an easy-to-use interface for specifying these
problems, which appear in many applications, including the transport model optimal power
�ow problem discussed here. We posit that additional structure of this problem may be
exploited in solution methods. For example, the positivity of the dual variable suggests that
a barrier method may perform well. We leave this and other numerical exploration for future
work.

10

References

[AMO88] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network �ows.
Cambridge, Mass.: Alfred P. Sloan School of Management, Massachusetts . . .,
1988.

[AO21] Azam Asl and Michael L Overton. �Behavior of limited memory BFGS when
applied to nonsmooth functions and their Nesterov smoothings�. In: Numerical
Analysis and Optimization: NAO-V, Muscat, Oman, January 2020 V. Springer.
2021, pp. 25�55.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. 1st ed. Cam-
bridge, United Kingdom: Cambridge University Press, 2004. 716 pp. isbn: 978-
0-521-83378-3.

[Byr+95] Richard H Byrd et al. �A limited memory algorithm for bound constrained op-
timization�. In: SIAM Journal on scienti�c computing 16.5 (1995), pp. 1190�
1208.

[DAE24] Theo Diamandis, Guillermo Angeris, and Alan Edelman. �Convex Network Flows�.
In: (2024).

[DHL17] Iain Dunning, Joey Huchette, and Miles Lubin. �JuMP: A Modeling Language
for Mathematical Optimization�. In: SIAM Review 59.2 (Jan. 2017), pp. 295�320.
issn: 0036-1445, 1095-7200.

[Kra+13] Matt Kraning et al. �Dynamic network energy management via proximal message
passing�. In: Foundations and Trends® in Optimization 1.2 (2013), pp. 73�126.

[Leg+21] Benoît Legat et al. �MathOptInterface: A Data Structure for Mathematical Op-
timization Problems�. In: INFORMS Journal on Computing (Oct. 22, 2021),
ijoc.2021.1067. issn: 1091-9856, 1526-5528.

[LO13] Adrian S Lewis and Michael L Overton. �Nonsmooth optimization via quasi-
Newton methods�. In: Mathematical Programming 141 (2013), pp. 135�163.

[Lub+23] Miles Lubin et al. �JuMP 1.0: Recent improvements to a modeling language
for mathematical optimization�. In: Mathematical Programming Computation
(2023).

[MN11] José Luis Morales and Jorge Nocedal. �Remark on �Algorithm 778: L-BFGS-B:
Fortran subroutines for large-scale bound constrained optimization��. In: ACM
Transactions on Mathematical Software (TOMS) 38.1 (2011), pp. 1�4.

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. 2nd ed. Springer
Series in Operations Research. New York: Springer, 2006. 664 pp. isbn: 978-0-
387-30303-1.

[RLP16] J. Revels, M. Lubin, and T. Papamarkou. �Forward-Mode Automatic Di�erenti-
ation in Julia�. In: arXiv:1607.07892 [cs.MS] (2016).

[Roc70] R. Tyrrell Rockafellar. Convex Analysis. Vol. 28. Princeton university press, 1970.

11

[Stu19] Paul Melvin Stursberg. �On the mathematics of energy system optimization�.
PhD thesis. Technische Universität München, 2019.

[Ude+14] Madeleine Udell et al. �Convex optimization in Julia�. In: 2014 First Workshop
for High Performance Technical Computing in Dynamic Languages. IEEE. 2014,
pp. 18�28.

[Wil19] David PWilliamson. Network �ow algorithms. Cambridge University Press, 2019.

[Zhu+97] Ciyou Zhu et al. �Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization�. In: ACM Transactions on mathematical soft-
ware (TOMS) 23.4 (1997), pp. 550�560.

A Simple examples

In this section, we provide a number of simple examples using the ConvexFlows interface.

A.1 Optimal power �ow.

First, we return to the optimal power �ow example from [DAE24, �3.2]. We wish to �nd
a cost-minimizing power generation plan that meets demand over a network of generators
and consumers connected by transmission lines. Given problem parameters demand d, line
capacities ub, and graph adjacency matrix Adj, the entire optimal power �ow problem may
be de�ned and solved in less than ten lines of code:

� �
Parameters: demand d, graph Adj, upper bounds ub
obj = NonpositiveQuadratic(d)
h(w) = 3w - 16.0*(log1pexp(0.25 * w) - log(2))

lines = Edge[]
for i in 1:n, j in i+1:n

Adj[i, j] ≤ 0 && continue
push!(lines, Edge((i, j); h=h, ub=ub[i]))

end

prob = problem(obj=obj, edges=lines)
result = solve!(prob)� �
In this example, we used the special function log1pexp from the LogExpFunctions
package, which is a numerically well-behaved implementation of the function x 7→ log(1 +
ex). Since h may be speci�ed as native Julia code, using non-standard functions does not
introduce any additional complexity.

In this case, the arbitrage problem has a closed-form solution, easily derived from the
�rst-order optimality conditions. With a small modi�cation, we can give this closed-form
solution to the solver directly. We write this closed form solution as

12

� �
Closed for solution to the arbitrage problem, i.e. the wstar that solves
h'(wstar) == ratio
function wstar(ratio, b)

if ratio ≥ 1.0
return 0.0

else
return min(4.0 * log((3.0 - ratio)/(1.0 + ratio)), b)

end
end� �
We only need to modify the line in which we de�ne the edges, changing it to

� �
push!(lines, Edge((i, j); h=h, ub=ub_i, wstar = @inline w -> wstar(w, ub_i)))� �
After these modi�cations, we lose little computational e�ciency compared to specifying the
solution to the arbitrage problem directly. However, if we specify the problem directly, we
may pre-compute the zero-�ow region, inside which a line is not used at all. Compare the
code for this example with the code for the fully-speci�ed example in [DAE24, �6.1], which
can be found at

https://github.com/tjdiamandis/ConvexFlows.jl/tree/main/paper/opf.

A.2 Trading with constant function market makers

Similarly, we can easily specify the problem of �nding an optimal trade given a network of
decentralized exchanges. Here, we assume that the constant function market makers are
governed by the trading function (see [DAE24, �3.5] for additional discussion)

φ(R) =
√
R1R2.

This trading function results in the gain function

h(w) =
wR2

R1 + w
,

which one can easily verify is strictly concave and increasing for w ≥ 0. Given the adjacency
matrix Adj and constant function market maker reserves Rs, we may specify the problem of
�nding the optimal trade as

� �
obj = Linear(ones(n));
h(w, R1, R2) = R2*w/(R1 + w)

cfmms = Edge[]
for (i, inds) in enumerate(edge_inds)

13

https://github.com/tjdiamandis/ConvexFlows.jl/tree/main/paper/opf

i1, i2 = inds
push!(cfmms, Edge((i1, i2); h=w->h(w, Rs[i][1], Rs[i][2]), ub=1e6))
push!(cfmms, Edge((i2, i1); h=w->h(w, Rs[i][2], Rs[i][1]), ub=1e6))

end

prob = problem(obj=obj, edges=cfmms)
result = solve!(prob)� �
Here, our objective function U(y) = 1Ty indicates that we value all tokens equally.

A.3 Market clearing

Finally, we revisit the market clearing example from [DAE24, �3.4]. In this example, the
objective function includes a constraint, so we must specify it directly. However, we may
still specify edge gain functions instead of specifying the arbitrage problems directly.

Recall that the objective function is given by

U(y) =

nb∑
i=1

ci log yi − I(ynb+1:nb+ng ≥ −1),

where nb is the number of buyers, ng is the number of goods, and c ∈ Rnb
+ is a vector

of budgets. We will de�ne a struct MarketClearingObjective to hold the problem pa-
rameters and then de�ne the methods U to evaluate the objective, Ubar to evaluate the
associated subproblem (3a), and ∇Ubar! to evaluate the gradient of the subproblem. The
full implementation of the �rst subproblem is below.

� �
const CF = ConvexFlows
struct MarketClearingObjective{T} <: Objective

budget::Vector{T}
nb::Int
ng::Int
ϵ::T

end
function MarketClearingObjective(budget::Vector{T}, nb::Int, ng::Int; tol=1e-8)

where T
@assert length(budget) == nb
return MarketClearingObjective{T}(budget, nb, ng, tol)

end
Base.length(obj::MarketClearingObjective) = obj.nb + obj.ng

function CF.U(obj::MarketClearingObjective{T}, y) where T
any(y[obj.nb+1] .< -1) && return -Inf
return sum(obj.budget .* log.(y[1:obj.nb])) - obj.ϵ/2*sum(abs2, y[obj.nb+1:

end])
end

14

function CF.Ubar(obj::MarketClearingObjective{T}, ν) where T
return sum(log.(obj.budget ./ ν[1:obj.nb]) .- 1) + sum(ν[obj.nb+1:end])

end

function CF.∇Ubar!(g, obj::MarketClearingObjective{T}, ν) where T
g[1:obj.nb] .= -obj.budget ./ ν[1:obj.nb]
g[obj.nb+1:end] .= 1.0
return nothing

end� �
We specify the utility that buyer b gets from good g as

h(w) =
√
b+ gw −

√
b.

With the objective de�ned, we may easily specify and solve this problem as before:

� �
obj = MarketClearingObjective(budgets, nb, ng)
u(x, b, g) = sqrt(b + g*x) - sqrt(b)

edges = Edge[]
for b in 1:nb, g in 1:ng

ub arbitrary since 1 unit per good enforced in objective
push!(edges, Edge((nb + g, b); h=x->u(x, b, g), ub=1e3))

end

prob = problem(obj=obj, edges=edges)
result = solve!(prob)� �
See the documentation for additional details and commentary.

B Multi-period power generation example

We create a hour-by-hour power generation plan for an example network with three nodes
over a time period of 5 days. The �rst two nodes are users who consume power and have a
sinusoidal demand with a period of 1 day. These users may generate power at a very high
cost (γi = 100). The third node is a generator, which may generate power at a low cost
(γi = 1) and demands no power for itself. The parameters are de�ned as follows:

� �
Problem parameters
n = 3
days = 5
T = 24*days
N = n*T

d_user = sin.((1:T) .* 2π ./ 24) .+ 1.5

15

c_user = 100.0
d_gen = 0.0*ones(T)
c_gen = 1.0

d = vec(vcat(d_user', d_user', d_gen'))
c = repeat([c_user, c_user, c_gen], T)
obj = NonpositiveQuadratic(d; a=c)� �

Next, we build a network between these three nodes. We create the transmission line as
in �A.1. Then we build the storage edges, which `transmit' power from time t to time t+ 1.
We equip the second user with a battery, which can store power between time periods with
e�ciency γ = 1.0. The network has a total of 360 nodes and 359 edges.

� �
Network: two nodes, both connected to generator
function build_edges(n, T; bat_node)

net_edges = [(i,n) for i in 1:n-1]
edges = Edge[]

Transmission line edges
h(w) = 3w - 16.0*(log1pexp(0.25 * w) - log(2))
function wstar(η, b)

η ≥ 1.0 && return 0.0
return min(4.0 * log((3.0 - η)/(1.0 + η)), b)

end

for (i,j) in net_edges
bi = 4.0
for t in 1:T

it = i + (t-1)*n
jt = j + (t-1)*n
push!(edges, Edge((it, jt); h=h, ub=bi, wstar=η -> wstar(η, bi)))
push!(edges, Edge((jt, it); h=h, ub=bi, wstar=η -> wstar(η, bi)))

end
end

Storage edges
ϵ = 1e-2
wstar_storage(η, γ, b) = η ≥ γ ? 0.0 : min(1/ϵ*(γ - η), b)

only node 2 has storage
for t in 1:T-1

it = bat_node + (t-1)*n
it_next = bat_node + t*n
γi = 1.0
storage_capacity = 10.0
push!(edges, Edge(

(it, it_next);
h= w -> γi*w - ϵ/2*wˆ2,
ub=storage_capacity,

16

wstar = η -> wstar_storage(η, γi, storage_capacity)
))

end
return edges

end� �
With the hard work of de�ning the network completed, we can construct and solve the

problem as before. We solve this problem with BFGS, as L-BFGS does not exhibit good
convergence on our problem, which is consistent to the results in [AO21]. The (almost) linear
edges mean this problem is (almost) nonsmooth.

� �
edges = build_edges(n, T, bat_node=2)
prob = problem(obj=obj, edges=edges)
result_bfgs = solve!(prob; method=:bfgs)� �

17

	Introduction
	The convex flow problem
	Dual problem
	Properties
	Solving the dual problem

	Interface
	The first subproblem
	The second subproblem

	Example: optimal power flow
	Numerical examples
	Multi-period power generation example
	Larger network

	Conclusion
	Simple examples
	Optimal power flow.
	Trading with constant function market makers
	Market clearing

	Multi-period power generation example

