
Ligerito: A Small and Concretely Fast Polynomial
Commitment Scheme

Andrija Novakovic
anovakovic@baincapital.com

Guillermo Angeris
gangeris@baincapital.com

May 2025

Abstract
In this note we present Ligerito, a small and practically fast polynomial commitment and

inner product scheme. For the case of univariate and multilinear polynomial evaluations, the
scheme a has proof size of ∼ log(𝑁)2/ log log(𝑁) up to constants and for a large enough field,
where 𝑁 is the size of the input. Ligerito is also is fast on consumer hardware: when run on
an M1 MacBook Pro for a polynomial with 224 coefficients over a 32-bit binary field, our Julia
prover implementation has a proving time of 1.3 seconds and a proof size of 255 KiB. Ligerito
is also relatively flexible: any linear code for which the rows of the generator matrix can
be efficiently evaluated can be used. Such codes include Reed–Solomon codes, Reed–Muller
codes, among others. This, in turn, allows for a high degree of flexibility on the choice of field
and can likely give further efficiency gains in specific applications.

1 Introduction
Polynomial commitment schemes such as KZG [KZG10], Ligero [Ame+17], FRI [Ben+18],
BaseFold [ZCF23], Blaze [Bre+24], and WHIR [Arn+24] have become workhorses for zero-
knowledge proofs and other applications such as blockchain scaling [EMA25]. In many cases
(with the notable exception of Ligero), state-of-the-art schemes require the use of specific
error correcting codes, such as Reed–Solomon codes, or require fields with particular prop-
erties. In this note, we present Ligerito, a new polynomial commitment scheme and inner
product argument, which works over essentially any code that has the following property:
any row of the code’s generator matrix can be efficiently evaluated. While this flexibility is
nice, we show that, even when using basic Reed–Solomon codes over binary fields, Ligerito
has small proofs and fast in practice on standard consumer hardware. This scheme also allows
for the relatively ‘rich’ language of sumcheck to express more complicated constraints (such
as arbitrary inner products with the coefficients of the provided polynomial) with nearly no
additional overhead for the prover or the proof size. Finally, Ligerito is asymptotically small
with a proof size of ∼ log(𝑁)2/ log log(𝑁), up to constants, for a large enough field, where 𝑁

1

mailto:anovakovic@baincapital.com
mailto:gangeris@baincapital.com

is the size of the input. The proving time is, essentially, proportional to the encoding time of
the codes used.

Structure of this note. The rest of this note is structured as follows. In section 2, we
describe the notation and conventions we will use throughout the note. In sections 3 and 4, we
describe the matrix-vector product protocol and partial sumcheck protocols, which we will
use as black boxes in the construction of Ligerito. In section 5, we describe the matrix-vector
product protocol with partial sumcheck, which is a ‘simple’ way of merging the matrix-vector
product and sumcheck protocols, and serves as a stepping stone for the final protocol. In
section 6, we describe the Ligerito protocol in its entirety and provide a simple proof of its
error bounds, ending with a small set of practical experiments in section 7.

2 Notation and conventions
We use the notation and conventions of [EA23] for simplicity. While familiarity with the
Ligero protocol [Ame+17] is not strictly necessary to read this note, we refer readers
to [AER24] and [DG24] for proofs which we will rely on throughout.

2.1 Basic notation
Let 𝐅 denote some finite field. We will sometimes make use of the fact that 𝐅′ ⊆ 𝐅 is a subfield
of 𝐅. Throughout this note, we use uppercase letters such as 𝑋 and 𝐺 to refer to matrices,
use lowercase letters to refer to column vectors, such that 𝑣 ∈ 𝐅𝑛 denotes an 𝑛-vector and
𝐺 ∈ 𝐅𝑚×𝑛 denotes an 𝑚× 𝑛 matrix, each over the field 𝐅. In general 𝐺 ∈ 𝐅𝑚×𝑛 will refer to
some (linear) code with distance 𝑑 > 0, where 𝑛 is called the message length and 𝑚 is called
the block length. We write ‖𝑣‖ to denote the Hamming weight of a vector 𝑣 (i.e., the number
of nonzero entries of 𝑣) and ‖𝑋‖ to denote the number of nonzero rows of a matrix 𝑋. Note
that this notation is consistent if we interpret a vector 𝑣 as an 𝑛 × 1 matrix, as we generally
will in this note.

2.2 Matrix and polynomial notation
Since we constantly reshape matrices and vectors throughout the note, we will overload
notation to simplify and clean up the exposition.

Matrices to vectors (and back). For a given matrix �̃� ∈ 𝐅𝑚×𝑛, we write 𝐯𝐞𝐜(�̃�) to the
𝑚𝑛-vector corresponding to stacking the columns of the matrix �̃� into a single column vector.
Similarly, for a given vector 𝑣 ∈ 𝐅𝑚𝑛, we write 𝐌𝐚𝐭(𝑣) to denote matrix corresponding to
reshaping the vector 𝑣 into a column-major 𝑚× 𝑛 matrix. In general, it should always be clear
from context what the dimensions of this matrix are such that the expressions correctly parse.
When there is any ambiguity, we will be explicit about the dimensions of the resulting matrix.
We will also sometimes write 𝐌𝐚𝐭(�̃�) for the reshaping of a matrix �̃� to the appropriate
dimensions. (This is equivalent to writing 𝐌𝐚𝐭(𝐯𝐞𝐜(�̃�)), which is now well-defined, but this
is rather cumbersome.)

2

Kronecker product. We will define the Kronecker product ⊗, defined for two matrices
𝐴 ∈ 𝐅𝑚×𝑛 and 𝐵 ∈ 𝐅𝑚′×𝑛′ as

𝐴⊗𝐵 =

[
[
[
[
[𝐴11𝐵
𝐴21𝐵
⋮

𝐴𝑚1𝐵

𝐴12𝐵
𝐴22𝐵
⋮

𝐴𝑚2𝐵

…
…
⋱
…

𝐴1𝑛𝐵
𝐴2𝑛𝐵

⋮
𝐴𝑚𝑛𝐵]

]
]
]
]
.

The resulting matrix 𝐴⊗𝐵 is therefore of size 𝑚𝑚′ × 𝑛𝑛′. To avoid overly complicated
expressions we will write, for a given vector 𝑟 ∈ 𝐅𝑘, the ‘barred’ vector

𝑟 = (1 − 𝑟1, 𝑟1) ⊗ …⊗ (1 − 𝑟𝑘, 𝑟𝑘), (1)

which is a (column) vector of size 2𝑘.

Polynomials and vectors. Let 𝑣 ∈ 𝐅2𝑘′ be a general vector with elements in 𝐅. It will be
very convenient in what follows to overload notation and write, for 𝑧 ∈ 𝐅𝑘′ ,

𝑣(𝑧) = 𝑣𝑇 𝑧 = 𝑣𝑇 ((1 − 𝑧1, 𝑧1) ⊗ …⊗ (1 − 𝑧𝑘, 𝑧𝑘)). (2)

(Note that we have used the barred notation (1) for 𝑧.) In other words, when writing 𝑣 as a
function, evaluated at 𝑧 ∈ 𝐅𝑘′ , we interpret the vector 𝑣 as the coefficients of a multilinear
polynomial in 𝑘 variables and evaluate it at the point 𝑧. This lets us define the partial evalu�
ation of 𝑣 in the first 𝑘 ≤ 𝑘′ variables at a point 𝑟 ∈ 𝐅𝑘′ , as

𝑦 = 𝐌𝐚𝐭(𝑣)𝑟. (3)

Note that, from our definition (1), 𝑟 is a vector of size 2𝑘′ . This means that we can infer the
shape of 𝐌𝐚𝐭(𝑣) to be a 2𝑘−𝑘′ × 2𝑘′ matrix corresponding to a column-major reshaping of the
elements of 𝑣. This, in turn, means that 𝑦 is a 2𝑘−𝑘′-vector, which is the partial evaluation of 𝑣
(interpreted as a polynomial) when the first 𝑘 variables are equal to 𝑟, with the rest free; i.e.,

𝑦(𝑧) = 𝑣(𝑟, 𝑧),

for all 𝑧 ∈ 𝐅𝑘−𝑘′ . (As before, we are overloading notation as in (2) for both 𝑦 and 𝑣.) Finally,
for matrices �̃� ∈ 𝐅2𝑘×2𝑘′ it will also be convenient to write

�̃�(𝑧) = (𝐯𝐞𝐜(�̃�))(𝑧),

where 𝐯𝐞𝐜(�̃�) corresponds to stacking the columns of the matrix �̃� into a size 2𝑘+𝑘′ vector.

3 Matrix-vector product protocol
At a high level, the main tool we will use is the Ligero protocol [Ame+17], viewed as a matrix-
vector product protocol [AER24], with the logarithmic randomness of [DP24]. The Ligero
protocol allows us to compute �̃�𝑟, where 𝑟 will be some randomness we specify next, for any

3

matrix �̃� ∈ 𝐅𝑛×𝑛′ with communication proportional to 𝑛 + 𝑛′. To simplify the exposition,
we will assume that 𝑛′ = 2𝑘, though the results hold more broadly (by, e.g., padding the
matrix �̃�). We will also assume there is a known code 𝐺 ∈ 𝐅𝑚×𝑛 with distance 𝑑 > 0. We
break the protocol down into two parts—the algorithm performed by the prover and the
algorithm performed by the verifier.

Prover algorithm. Here we describe the prover’s algorithm for the matrix-vector product
protocol. We assume that the prover algorithm has a matrix �̃� ∈ 𝐅𝑛×𝑛′ . The algorithm is as
follows:

1. Encode the columns of �̃� to get 𝑋 = 𝐺�̃�

2. Commit to the rows of 𝑋, via, say, a Merkle commitment

3. Receive some random vector 𝑟 ∈ 𝐅𝑘

4. Compute and send 𝑦𝑟 = �̃�𝑟

We will call the first two steps of the prover’s algorithm the commitment phase.

Verifier algorithm. Here we describe the verifier’s algorithm for the matrix-vector prod-
uct protocol.

1. Receive the Merkle commitments to the rows of some opaque matrix 𝑋

2. Sample and send some random vector 𝑟 ∈ 𝐅𝑘, receiving some vector 𝑦𝑟 ∈ 𝐅𝑛

3. Uniformly sample 𝑆 ⊆ {1,…,𝑚}, of some fixed size |𝑆|

4. Verify that 𝑋𝑆𝑟 = 𝐺𝑆𝑦𝑟
Similar to the previous, we say that the first step is the commitment phase of the verifier’s
algorithm. If any step of this algorithm fails, the verifier rejects the proof, otherwise it
accepts. The randomness used for 𝑟 here will be logarithmic randomness, originally defined
in [DP24] and improved in [AER24], though it can be uniform randomness, as in [Ame+17].
(In the special case that 𝐺 is Reed–Solomon, the randomness can also be the powers of some
uniformly random element [Ben+23].) For the remainder of this note, we will assume that
𝐺 is a Reed–Solomon code and use logarithmic randomness, for which the results of [DG24]
are the best-known and we present them below. Finally, we note that, with some very small
modifications, the results hold in the general setting, for arbitrary linear codes 𝐺, though
potentially with slightly worse constants.

Guarantees. It is clear that, if the prover follows the above protocol, the verifier’s algorithm
will always succeed. (This property is often called completeness.) Additionally, from [AER24]
and [DG24], we know that the verifier, if all steps pass, has the following guarantees:

4

1. There exists some unique matrix �̃� such that ‖𝑋 −𝐺�̃�‖ < 𝑑/2, where 𝑑 is the distance
of the Reed–Solomon code 𝐺

2. The vector 𝑦𝑟 satisfies 𝑦𝑟 = �̃�𝑟; in other words, the received 𝑦𝑟 is the partial evaluation
of �̃�, interpreted as a polynomial, where the first 𝑘 variables are equal to 𝑟

All of these are true except with error probability no more than

(𝑚− 𝑛 − 1
2𝑚

)
|𝑆|

+ 𝑚𝑘
|𝐅|

(4)

in the special case that 𝐺 is a Reed–Solomon code, which is the case we use throughout the
note, though, again, the results hold more generally except with potentially slightly worse
constants.

Communication complexity. The communication complexity of this protocol is easy to
tally up. The verifier received an 𝑛-vector (namely, 𝑦𝑟) and the |𝑆| requested rows of 𝑋. This
totals to

(𝑛 + |𝑆|𝑛′) log2(|𝐅|). (5)

The prover also has to send the corresponding openings of each of the |𝑆| rows, which, if using
a binary Merkle commitment, totals to

|𝑆| log2(𝑚). (6)

(In a practical protocol, the concrete numbers can be made slightly better in expectation by
using a Merkle tree multi-opening.) Letting 𝑁 = 𝑛𝑛′ be the total number of entries in �̃�,
then we may set 𝑛 = 𝑛′ =

√
𝑁 to get a communication complexity of

|𝑆| log2(|𝐅|)
√
𝑁, (7)

not including the binary Merkle openings, which are small relative to this number as 𝑁
becomes large.

Discussion. The matrix-vector product protocol is relatively simple, and we will use it as
a black box in what follows. Note that we only access 𝑦𝑟 via the inner products with the |𝑆|
rows of 𝐺, which is an observation we will use next.

4 Partial sumcheck protocol
The sumcheck protocol is a well-known interactive protocol for computing an inner product
between two vectors. We will show a (only small) generalization here, which we use later in
this note.

5

4.1 High level protocol
Given some known vector 𝑤 ∈ 𝐅2𝑘 , which we interpret as an 𝑘 variable multilinear polyno-
mial, and some claimed inner product 𝛼 ∈ 𝐅, the sumcheck protocol is an interactive protocol
for reducing a claims of the form

∑
𝑧∈{0,1}𝑘

𝑤(𝑧)�̃�(𝑧) = 𝛼 (8)

to a claim of the form

∑
𝑧′∈{0,1}𝑘′

𝑤(𝑟, 𝑧′)�̃�(𝑟, 𝑧′) = 𝛼′. (9)

For some 𝛼′, randomness 𝑟 which we specify next, and 𝑘′ < 𝑘. (In other words, we reduce the
sum over 𝑘 variables to a sum over 𝑘′ variables and some partial evaluations of 𝑤 and �̃�.)
Another way to view (8) and the protocol is that we begin with an inner product between �̃�
and the vector 𝑤:

𝑤𝑇 𝐯𝐞𝐜(�̃�) = 𝛼,

which is then reduced to a new inner product between the partial evaluations

(𝐌𝐚𝐭(𝑤)𝑟)𝑇 (�̃�𝑟) = 𝛼′,

where 𝐌𝐚𝐭(𝑤) is the reshaping of 𝑤 to the appropriate dimensions. We will make use of this
particular observation later in the note.

4.2 Partial sumcheck protocol
As before, we will describe the prover and verifier algorithms separately. In this construction,
we will reduce the original sum over 𝑛 variables to a sum over 𝑛′ variables.

Prover algorithm. The prover algorithm is as follows.

1. For 𝑖 = 1,…, 𝑘 − 𝑘′

1. Send the polynomial 𝑠𝑖(𝑡) = ∑𝑧∈{0,1}𝑘−𝑖 𝑤(𝑟1,…, 𝑟𝑖−1, 𝑡, 𝑧)�̃�(𝑟1,…, 𝑟𝑖−1, 𝑡, 𝑧)

2. Receive a random challenge 𝑟𝑖 ∈ 𝐅, to be used in the next round

Verifier algorithm. The verifier algorithm is as follows.

1. Set 𝑠0 = 𝛼 to be a constant polynomial and 𝑟0 = 0 for convenience

2. For each of 𝑖 = 1,…, 𝑘 − 𝑘′:

1. Send some uniformly sampled 𝑟𝑖−1 ∈ 𝐅

6

2. Receive some degree 2 polynomial 𝑠𝑖 : 𝐅 → 𝐅

3. Verify that 𝑠𝑖(0) + 𝑠𝑖(1) = 𝑠𝑖−1(𝑟𝑖−1)

If all verifications pass, the verifier accepts the proof. Otherwise, it rejects. Note that the
verifier does not need to know neither 𝑤 nor �̃� to run this algorithm.

Guarantees. The guarantees of the partial sumcheck is as follows. If the verifier knows that,
for a new uniformly randomly sampled 𝑟𝑘−𝑘′ ∈ 𝐅,

𝑠𝑘−𝑘′(𝑟𝑘−𝑘′) = 𝛼′ = ∑
𝑧′∈{0,1}𝑘′

𝑤(𝑟1,…, 𝑟𝑘−𝑘′ , 𝑧′)�̃�(𝑟1,…, 𝑟𝑘−𝑘′ , 𝑧′) (10)

then, after running the verifier algorithm it is guaranteed that

∑
𝑧∈{0,1}𝑘

𝑤(𝑧)�̃�(𝑧) = 𝛼,

except with additional error probability no more than

2(𝑘 − 𝑘′)
|𝐅|

. (11)

In particular, if 𝑘′ = 0, this reduces to the standard sumcheck since the terminal condi-
tion (10) is simply to evaluate the product of 𝑤 and �̃� at (𝑟1,…, 𝑟𝑘):

𝑠𝑘(𝑟𝑘) = 𝑤(𝑟1,…, 𝑟𝑘)�̃�(𝑟1,…, 𝑟𝑘).

It is very easy (and relatively standard) to see that if the prover follows the prover algorithm,
the verifier will always accept the proof. It is also easy to see the (partial) converse: if all
steps of the verifier algorithm pass, including the final check (10), then, the verifier knows
that the inner product 𝑤𝑇 𝐯𝐞𝐜(�̃�) = 𝛼, except with error probability no more than specified
in (11). The proof is identical to the standard sumcheck protocol proof and we refer readers
to [Tha22], chapter 4.

Discussion. It will be convenient to note that equation (10) can be written in matrix form as

𝑠𝑘−𝑘′(𝑟𝑘−𝑘′) = (𝐌𝐚𝐭(𝑤)𝑟)𝑇 (�̃�𝑟),

where, as before, 𝑟 = (1 − 𝑟1, 𝑟1) ⊗ …⊗ (1 − 𝑟𝑘−𝑘′ , 𝑟𝑘−𝑘′).

4.3 Observations
In this section, we make some simple observations about the partial sumcheck protocol which
we use in the protocol that follows.

7

Inner products. As mentioned before, the sumcheck protocol can be viewed as a protocol
for verifying that the inner product between two vectors, 𝑤 and 𝐯𝐞𝐜(�̃�) is, say, 𝛼; written
out, this means that

𝑤𝑇 𝐯𝐞𝐜(�̃�) = ∑
𝑧∈{0,1}𝑘

𝑤(𝑧)�̃�(𝑧) = 𝛼.

Batching evaluations. If we are given a list of 𝑞 vectors 𝑤1,…,𝑤𝑞 ∈ 𝐅2𝑘 , and claimed
inner products 𝛼1,…, 𝛼𝑞 ∈ 𝐅, we can ‘batch’ the evaluations and proofs into a single partial
sumcheck protocol instance. The observation is very simple: once 𝛼1,…, 𝛼𝑞 are received,
the verifier can draw some uniform randomness 𝛽1,…, 𝛽𝑞 ∈ 𝐅 and simply run the partial
sumcheck protocol over the new vector

�̃� = 𝛽1𝑤1 +…+ 𝛽𝑞𝑤𝑞, (12)

and then new claimed inner product

�̃� = 𝛽1𝛼1 +…+ 𝛽𝑞𝛼𝑞.

holding �̃� constant. This adds only a small probability of error, namely 1/|𝐅|, to the error
probability of the protocol, if we use uniform and independent randomness for each 𝛽𝑖. We
will call this new vector 𝑤 of (12), resulting from the batching process, the batched vector or
batched polynomial.

Gluing sumchecks. One observation is that, given a partial sumcheck protocol instance,
where the we are reducing a sum over 𝑘 variables to a sum over 𝑘″ variables, it is possible to,
at any round 𝑘′ with 𝑘″ < 𝑘′ < 𝑘, view the partial sumcheck protocol from 𝑘 to 𝑘″ variables
as two ‘glued’ instances of the sumcheck protocol: one from 𝑘 to 𝑘′ variables and one from
𝑘′ to 𝑘″ variables. It is then possible, via the batching observation above, to batch two inner
products: one sum over 𝑘 variables and one sum over 𝑘′ variables (with the rest of the variables
fixed by the randomness of the first partial sumcheck).

Complete batched and glued sumcheck. For completeness, we describe the batched
and glued sumcheck below. We assume that the prover has some matrix �̃� ∈ 𝐅2𝑘×2𝑘′ (which
itself could be a partial evaluation of some larger matrix). The prover algorithm is as follows:

1. Receive some vectors 𝑤1,…,𝑤𝑞 ∈ 𝐅2𝑘+𝑘′

2. Send evaluations 𝛼𝑖 = 𝐯𝐞𝐜(�̃�)𝑇𝑤𝑗 for 𝑗 = 1,…, 𝑞

3. Receive some batching randomness 𝛽 ∈ 𝐅𝑞

4. Construct a batched vector �̃� = ∑𝑞
𝑗=1 𝛽𝑗𝑤𝑗

5. For 𝑖 = 1,…, 𝑘 − 𝑘′

8

1. Send the polynomial 𝑠𝑖(𝑡) = ∑𝑧∈{0,1}𝑘−𝑖 �̃�(𝑟1,…, 𝑟𝑖−1, 𝑡, 𝑧)�̃�(𝑟1,…, 𝑟𝑖−1, 𝑡, 𝑧)

2. Receive a random challenge 𝑟𝑖 ∈ 𝐅, to be used in the next round, if 𝑖 < 𝑘 − 𝑘′

For the verifier:

1. Send some vectors 𝑤1,…,𝑤𝑞 ∈ 𝐅2𝑘+𝑘′

2. Receive (claimed) evaluations 𝛼𝑗 for 𝑗 = 1,…, 𝑞

3. Send batching randomness 𝛽 ∈ 𝐅𝑞

4. Construct a batched vector �̃� = ∑𝑞
𝑗=1 𝛽𝑗𝑤𝑗 ∈ 𝐅2𝑘+𝑘′

5. Set 𝑠0 = ∑𝑞
𝑗=1 𝛽𝑗𝛼𝑗 to be a constant polynomial and 𝑟0 = 0 for convenience

6. For 𝑖 = 1,…, 𝑘 − 𝑘′:

1. Send some uniformly sampled 𝑟𝑖−1 ∈ 𝐅

2. Receive some degree 2 polynomial 𝑠𝑖 : 𝐅 → 𝐅

3. Verify that 𝑠𝑖(0) + 𝑠𝑖(1) = 𝑠𝑖−1(𝑟𝑖−1)

If all verifier checks pass, the verifier accepts the proof. Additionally, if the verifier knows
that, for a new uniformly randomly sampled 𝑟𝑘−𝑘′ ∈ 𝐅, the following is true:

𝑠𝑘−𝑘′(𝑟𝑘−𝑘′) = ∑
𝑧′∈{0,1}𝑘′

�̃�(𝑟1,…, 𝑟𝑘−𝑘′ , 𝑧′)�̃�(𝑟1,…, 𝑟𝑘−𝑘′ , 𝑧′), (13)

then the verifier is guaranteed that

∑
𝑧∈{0,1}𝑘

𝑤𝑗(𝑧)�̃�(𝑧) = 𝛼𝑗,

with error probability no more than

2(𝑘 − 𝑘′)
|𝐅|

+ 1
|𝐅|

,

if the 𝛽 are uniformly randomly chosen. It is important to note that the vectors 𝑤𝑗 can be
themselves partial evaluations of some larger vectors and that the verifier only needs access
to �̃� via the terminal condition (13). Note also that (from the gluing observation) the final
check (13) can itself be reduced via the sumcheck protocol to a sum over even fewer variables
using the above protocol.

9

5 Matrix-vector product with partial sumcheck
We will now show a simple combination of the matrix-vector product protocol and the partial
sumcheck protocol. This construction allows a prover to evaluate and prove that some inner
product between 𝐯𝐞𝐜(�̃�), where �̃� is some matrix known to the prover, and some public
vector 𝑤, is equal to 𝛼. This protocol essentially uses the following observation: the vector 𝑦𝑟
received by the verifier in the matrix-vector product protocol is, itself, a partial evaluation
of �̃� at some point 𝑔𝑟. This is essentially the right hand side of the final check of the partial
sumcheck protocol in (10).

Prover algorithm. Given some matrix �̃� ∈ 𝐅2𝑘×2𝑘′ , the prover algorithm is as follows.

1. Run the commitment phase (steps 1-2) of the matrix-vector product on �̃�

2. Receive some vector 𝑤 ∈ 𝐅2𝑘+𝑘′

3. Run the partial sumcheck prover protocol on the vector 𝑤, the matrix �̃�, and the
claimed inner product 𝛼 to reduce the sum over (𝑘 + 𝑘′) to 𝑘 variables. In doing so,
receive randomness 𝑟1,…, 𝑟𝑘′−1 and send final polynomial 𝑠𝑘′

4. Receive 𝑟𝑘′ ∈ 𝐅 and construct 𝑟 = (1 − 𝑟1, 𝑟1) ⊗ …⊗ (1 − 𝑟𝑘′ , 𝑟𝑘′)

5. Send 𝑦𝑟 = �̃�𝑟, like the matrix-vector product protocol

Verifier algorithm. We assume that the verifier has some vector 𝑤 ∈ 𝐅2𝑘+𝑘′ over which
they would like to compute some inner product with the (unknown and opaque) matrix �̃�.
The verifier algorithm is as follows.

1. Receive the Merkle commitments to the rows of some opaque matrix 𝑋

2. Send the vector 𝑤 ∈ 𝐅2𝑘+𝑘′ and receive claimed evaluation 𝛼

3. Run the partial sumcheck verifier protocol with the claimed evaluation 𝛼, receiving
some degree 2 polynomial 𝑠𝑘′ and some randomness 𝑟1,…, 𝑟𝑘′−1

4. Sample and send 𝑟𝑘′ ∈ 𝐅 and construct 𝑟 = (1 − 𝑟1, 𝑟1) ⊗ …⊗ (1 − 𝑟𝑘′ , 𝑟𝑘′)

5. Receive some vector 𝑦𝑟 ∈ 𝐅2𝑘

6. Uniformly sample 𝑆 ⊆ {1,…,𝑚}, of some fixed size |𝑆|

7. Verify that 𝑋𝑆𝑟 = 𝐺𝑆𝑦𝑟, therefore conclude that 𝑦𝑟 = �̃�𝑟 from the matrix-vector
product protocol guarantees, where �̃� is the unique matrix with ‖𝑋 −𝐺�̃�‖ < 𝑑/2

8. Verify the partial sumcheck’s final check 𝑠𝑘′(𝑟𝑘′) = 𝑦𝑇𝑟 𝐌𝐚𝐭(𝑤)𝑟

If all check pass then the verifier accepts the proof. Otherwise, it rejects. Step 8 can be easily
interpreted as computing the right hand side of the final check (10):

10

𝑦𝑇𝑟 𝐌𝐚𝐭(𝑤)𝑟 = ∑
𝑧′∈{0,1}𝑘

𝑦𝑟(𝑧′)𝑤(𝑟1,…, 𝑟𝑘′ , 𝑧′) = ∑
𝑧′∈{0,1}𝑘

�̃�(𝑟1,…, 𝑟𝑘′ , 𝑧′)𝑤(𝑟1,…, 𝑟𝑘′ , 𝑧′),

where the second equality comes from the guarantee given in step 7 of the verifier algorithm.
Note that the total error probability of the protocol can be bounded by the sum of the error
probabilities of the matrix-vector product protocol and the partial sumcheck protocol:

(𝑚− 𝑛 − 1
2𝑚

)
|𝑆|

+ 𝑚 log2(𝑛)
|𝐅|

+ 2𝑘′

|𝐅|
. (14)

Guarantees and discussion. The guarantees of the above protocol are essentially the
same as those of the matrix-vector product protocol—i.e., there exists a unique matrix �̃�
closest to the committed matrix 𝑋 and that of step 7—with the additional conclusion that,
indeed

𝑤𝑇 𝐯𝐞𝐜(�̃�) = 𝛼;

in other words, that the inner product of this unique �̃� with 𝑤 is, indeed, 𝛼.
As before, we can also use the observation above to batch multiple {𝑤𝑖} vectors and so on.

We note that this style of protocol is not new and has been used, in slightly different forms,
in other contexts such as [DP25].

6 Ligerito
In this section, we present Ligerito, the main protocol, which shows how to, roughly speaking,
recurse the protocol presented in the previous section.

6.1 High level idea
The high level idea for this protocol is very simple. In the general matrix-vector product
protocol and its extension with the partial sumcheck, the verifier receives all of 𝑦𝑟 in order
to verify that 𝐺𝑆𝑦𝑟 matches the opened rows of 𝑋; i.e., that 𝑋𝑆𝑟 = 𝐺𝑆𝑦𝑟, as in step 7 of the
verifier protocol. The main thing we observe is that the verifier only accesses the received
partial evaluation 𝑦𝑟 via the |𝑆| inner products with the rows of 𝐺 and the final inner product
of step 8, 𝑦𝑇𝑟 𝐌𝐚𝐭(𝑤)𝑟. Note, of course, that the prover does not need to send 𝑦𝑟: it can,
instead, commit to 𝐌𝐚𝐭(𝑦𝑟) as a new matrix, and then, again, use the previous section’s
protocol to prove the desired inner products with the rows of 𝐺. We can continue to recurse
this, say ℓ, times, where, in the last step, we simply run the matrix-vector product with the
partial sumcheck of the previous section.

6.2 Protocol algorithms
For now, it will be useful to specify a parameter ℓ ≥ 2 which will determine the number of
rounds we will run; we will then later show an optimal choice of ℓ. The protocol requires, as
in the previous protocol, a sequence of dimensions 𝑘1,…, 𝑘ℓ and 𝑘′1,…, 𝑘′ℓ with 𝑘𝑖+1 + 𝑘′𝑖+1 =

11

𝑘𝑖, and a number of codes 𝐺𝑖 ∈ 𝐅𝑚𝑖×2𝑘𝑖 for 𝑖 = 1,…, ℓ − 1, each with distance 𝑑𝑖 > 0. The
only requirements for these code matrices will be that it is efficient to evaluate a (generally
random) row of each 𝐺𝑖. This is true for a large number of code matrices such as Reed–
Solomon codes, Reed–Muller codes, among many others.

Prover algorithm. The prover has some matrix �̃�1 ∈ 𝐅2𝑘1×2𝑘′1 along with the previously
mentioned public data. After committing to �̃�1, the prover will receive some 𝑤 ∈ 𝐅2𝑘1+𝑘′1 and
will show that 𝑤𝑇 𝐯𝐞𝐜(�̃�1) = 𝛼.

1. For 𝑖 = 1,…, ℓ − 1

1. Run the commitment phase (steps 1-2) of the matrix-vector product on �̃�𝑖

2. If 𝑖 = 1 receive 𝑤 ∈ 𝐅𝑘1+𝑘′
1 and set �̃�0 = 𝑤

2. If 𝑖 ≥ 2, receive the sampled indices 𝑆𝑖−1 ⊆ {1,…,𝑚𝑖−1}

3. If 𝑖 ≥ 2, compute the expected symbols 𝑣𝑖−1 = (𝐺𝑖−1 𝐯𝐞𝐜(�̃�𝑖))𝑆𝑖−1
, this is |𝑆𝑖−1|

inner products with �̃�𝑖

4. Run the batched and glued sumcheck

1. If 𝑖 ≥ 2, send the |𝑆| expected symbols 𝑣𝑖−1
2. Batch the inner product evaluations of the 𝑣𝑖−1 with �̃�𝑖−1, getting a new

batched vector, �̃�𝑖

3. Run the partial sumcheck protocol to reduce �̃�𝑇
𝑖 𝐯𝐞𝐜(�̃�𝑖) by 𝑘𝑖 variables,

receiving randomness 𝑟𝑖 ∈ 𝐅𝑘𝑖) and sending final partial sum 𝑠𝑖

5. Set �̃�𝑖+1 = 𝐌𝐚𝐭(�̃�𝑖𝑟𝑖) ∈ 𝐅2𝑘𝑖+1×2𝑘
′
𝑖+1 to be committed in the next iteration

2. Send 𝑦ℓ = 𝐯𝐞𝐜(�̃�ℓ)

Verifier algorithm. The verifier algorithm is as follows.

1. For 𝑖 = 1,…, ℓ − 1

1. Receive a Merkle commitment to the rows of some opaque matrix 𝑋𝑖

2. If 𝑖 = 1, send 𝑤, set �̃�0 = 𝑤 for convenience, receive evaluation 𝛼, set 𝑠0 = 𝛼

3. If 𝑖 ≥ 2:

1. Uniformly sample and send 𝑆𝑖−1 ⊆ {1,…,𝑚𝑖−1} of fixed size |𝑆𝑖−1|

2. Receive purported vector of symbols 𝑣𝑖−1 ∈ 𝐅|𝑆𝑖−1|

3. Verify that (𝑋𝑖−1𝑟𝑖−1)𝑆𝑖−1
= 𝑣𝑖−1

12

4. Run the batched partial sumcheck verifier of section 4:

1. Batch the following checks into a new batched vector �̃�𝑖:

• The running sum 𝑠𝑖−1((𝑟𝑖−1)𝑘𝑖−1
) should be equal to the inner

product with �̃�𝑖−1

• If 𝑖 ≥ 2, then 𝑣𝑖 should be equal to the inner products with each
row of (𝐺𝑖−1)𝑆𝑖−1

2. Run the partial sumcheck protocol over the batched vector �̃�𝑖, sending
randomness 𝑟𝑖 ∈ 𝐅𝑘′

𝑖 and receiving the final degree-2 polynomial 𝑠𝑖

2. Receive vector 𝑦ℓ
3. Uniformly sample 𝑆ℓ−1 ⊆ {1,…,𝑚ℓ−1} of fixed size |𝑆ℓ−1|

4. Verify that (𝑋ℓ−1𝑟ℓ−1)𝑆ℓ−1
= 𝐺𝑆ℓ

𝑦ℓ
5. Verify that 𝑠ℓ−1((𝑟ℓ−1)𝑘ℓ−1

) = �̃�𝑇
ℓ 𝑦ℓ

Discussion. Note that when ℓ = 2, this reduces exactly to both the prover and verifier
algorithms for the matrix-vector product protocol with the partial sumcheck protocol of sec-
tion 5. Remco Bloemen and Giacomo Fenzi have commented that this protocol is structurally
similar to the WHIR protocol of [Arn+24], though we note that Ligerito uses general linear
codes, the logarithmic randomness of [DP24], and, as far as we can tell, results in concretely
different (and smaller) numbers in the unique decoding regime. An natural open question is
whether there is a simple generalization of both protocols that can recast them in a common
framework.

6.3 Guarantees
The guarantees of this protocol are as follows. If the prover follows the prover algorithm,
the verifier will always accept the proof. (This is easy to see from the verifier algorithm.) On
the other hand, if the verifier follows the verifier algorithm and accepts, then the verifier is
guaranteed that (1) there exists some unique matrix �̃�𝑖 such that

‖𝑋𝑖 −𝐺𝑖�̃�𝑖‖ <
𝑑𝑖
2
,

(i.e., the prover ‘knows’ a unique matrix �̃�𝑖 which is close to the committed matrix 𝑋𝑖) for
𝑖 = 1,…, ℓ − 1, and (2) that the inner product of the unique matrix �̃�1 with the vector 𝑤 is
equal to the claimed evaluation 𝛼:

𝑤𝑇 𝐯𝐞𝐜(�̃�1) = 𝛼.

13

Finally, the verifier guarantees that

𝑦ℓ = �̃�ℓ−1𝑟ℓ−1 = 𝐌𝐚𝐭(�̃�ℓ−2)(𝑟ℓ−2 ⊗ 𝑟ℓ−1) = … = 𝐌𝐚𝐭(�̃�1)(𝑟1 ⊗…⊗ 𝑟ℓ−1).

Or, in other words, that 𝑦ℓ is the partial evaluation of �̃�1 over randomness (𝑟1 ⊗…⊗ 𝑟ℓ−1).
Both statements are true except with error probability no more than the sum of the error
probabilities of the matrix-vector product protocol and the partial sumcheck protocol:

∑
ℓ−1

𝑖=1(
(((
2𝑘𝑖−1
|𝐅|

+ |𝑆𝑖| + 1
|𝐅|

+ (𝑚𝑖 − 2𝑘𝑖 − 1
2𝑚𝑖

)
|𝑆𝑖|

+ 𝑚𝑖𝑘𝑖
|𝐅|

)
)))

+2𝑘ℓ−1
|𝐅|

+ (𝑚ℓ − 2𝑘ℓ − 1
2𝑚ℓ

)
|𝑆ℓ|

+ 𝑚ℓ𝑘ℓ
|𝐅|

.

(15)

Here the first two terms in the sum correspond to the error from the sumcheck and the second
part comes from the matrix-vector product protocol. The tail term is simply the term in the
sum without the error incurred by batching the evaluations, hence the lack of the |𝑆𝑖| term.

Proof. The proof essentially follows from the guarantees of the matrix-vector product
protocol and the partial sumcheck protocol. We proceed by induction on ℓ ≥ 2. The base case,
ℓ = 2, is simply the matrix-vector product with the partial sumcheck protocol of section 5,
where the guarantees follow from the guarantees provided in that section. To reiterate
those guarantees, the verifier knows that there exists a unique matrix �̃�1 whose encoding is
closest to the committed matrix 𝑋1, that �̃�1𝑟 = 𝐯𝐞𝐜(�̃�2) = 𝑦2, and that the inner product
𝑤𝑇 𝐯𝐞𝐜(�̃�1) = 𝛼. The error probability of this protocol is exactly that of (14), where 𝑛 = 2𝑘1

and 𝑘′ = 𝑘′1:

2𝑘′1
|𝐅|

+ (𝑚1 − 2𝑘1 − 1
2𝑚1

)
|𝑆|

+ 𝑚1𝑘′1
|𝐅|

.

Now, assume that the guarantees hold for ℓ − 1: that is, for the matrix 𝑋2 (and, indeed, all
‘later’ matrices 𝑋3,…,𝑋ℓ) we have that there exists a unique matrix �̃�2 with

‖𝑋2 −𝐺2�̃�2‖ <
𝑑2
2
,

that �̃�2𝑟2 = 𝐯𝐞𝐜(�̃�3), and that the inner product �̃�𝑇
1 𝐯𝐞𝐜(�̃�2) = �̃�1 holds, where �̃�1 is

the batched vector of the previous round and �̃�1 is the expected batched result. From the
guarantees of the base case, we know that

(𝐺1)𝑆1
𝐯𝐞𝐜(�̃�2) = 𝑣1,

except with additional error probability no more than

14

1
|𝐅|

,

from the batching of the evaluations in the sumcheck protocol. The verifier checks, in step
3.3 that

(𝑋1)𝑆1
𝑟1 = 𝑣1,

hence

(𝑋1)𝑆1
𝑟1 = (𝐺1)𝑆1

𝐯𝐞𝐜(�̃�2),

and, from the matrix-vector product protocol guarantees of 3, we know that this implies

‖𝑋1 −𝐺1�̃�1‖ <
𝑑1
2
,

and that 𝐯𝐞𝐜(�̃�1) satisfies

𝐯𝐞𝐜(�̃�2) = �̃�1𝑟1,

except with (additional) error probability no more than

(𝑚1 − 2𝑘1 − 1
2𝑚1

)
|𝑆1|

+ 𝑚1𝑘1
|𝐅|

.

In other words, �̃�2 is known to be the partial evaluation of the unique matrix �̃�1 at 𝑟1. This,
in turn, means that, from the guarantees of the partial sumcheck protocol, we know that

𝑤𝑇 𝐯𝐞𝐜(�̃�1) = �̃�𝑇
0 𝐯𝐞𝐜(�̃�1) = 𝛼,

except with additional error probability no more than

2𝑘′1
|𝐅|

,

Tallying up the error gives a total error probability of

2𝑘′1
|𝐅|

+ |𝑆1| + 1
|𝐅|

+ (𝑚1 − 2𝑘1 − 1
2𝑚1

)
|𝑆1|

+ 𝑚1𝑘1
|𝐅|

+ 𝑝rest,

where 𝑝rest is the total error probability incurred by the inductive case (rounds 2 through ℓ).

6.4 Communication complexity
The communication complexity is also easy to total up and we will assume that the verifier
randomness is derived noninteractively (via, e.g., Fiat–Shamir) and hence not sent by the

15

verifier nor counted in the total communication. At round 𝑖 < ℓ, the prover sends |𝑆𝑖−1| +
1 field elements for the expected symbols 𝑣𝑖−1 and inner product with �̃�𝑖. It also sends 3𝑘𝑖
field elements, 3 elements for each degree-2 polynomial in the sumcheck protocol in step 4
of the prover algorithm. Finally, it sends |𝑆𝑖−1| openings of the rows of 𝑋𝑖−1, which total
to |𝑆𝑖−1|2𝑘

′
𝑖−1 field elements and |𝑆𝑖−1| log2(𝑚𝑖−1) hashes for the Merkle openings of the

corresponding rows. At round 𝑖 = ℓ, the prover sends �̃�ℓ in its entirety, which totals 2𝑘ℓ+𝑘′
ℓ =

2𝑘ℓ−1 field elements, along with the row openings and corresponding Merkle proofs. The total
communication complexity is therefore

∑
ℓ−1

𝑖=2
(3𝑘′𝑖−1 log2(|𝐅|) + |𝑆𝑖−1| ((2𝑘𝑖−1 + 1) log2(|𝐅|) + 𝐶 log2(𝑚𝑖−1)))

+(|𝑆ℓ−1| + 1 + 2𝑘ℓ−1) log2(|𝐅|) + 𝐶 |𝑆ℓ−1| log2(𝑚ℓ−1),

where 𝐶 is the size in bits of the hash function used (in our case, 𝐶 = 256, as we use SHA256).

Asymptotics. Let 𝜆 be the number of bits of security and 𝐅 be a field with size |𝐅| ≫ 2𝜆.
Also set log = log2 for notational convenience. The asymptotic communication complexity
is, ignoring small terms

(∑
ℓ

𝑖=1
|𝑆𝑖−1|2𝑘

′
𝑖−1 log(|𝐅|)) + 2𝑘ℓ−1 log(|𝐅|) + 𝐶ℓ log(𝑁

𝜌
),

where 𝑁 = 𝑘1 + 𝑘′1 is the total number of entries in �̃�1 and we use the (very coarse) bound
𝑚𝑖 ≤ 𝑁/𝜌, assuming that all 𝐺𝑖 have the same rate 𝜌 = 2𝑘′

𝑖/𝑚𝑖. This, in turn implies that

|𝑆𝑖| = ⌈− 𝜆 + log(ℓ)
log((1 + 𝜌)/2)

⌉

suffices to ensure that the error probability is smaller than 2−𝜆 for any ℓ. (This follows
from (15) and the fact that |𝐅| ≫ 2𝜆, so all terms proportional to 1/|𝐅| may be ignored.)
Finally, set ℓ = 2 log(𝑁)/ log(log(𝑁)) and 𝑘′𝑖 = log(𝑁)/ℓ for each 𝑖, which results in, asymp-
totically, a communication complexity no larger than

2 log(𝑁)
log(log(𝑁))

((𝜆 + log(𝑁)1/2)𝑡 log2(|𝐅|) + 𝐶 log(𝑁)) ∼ 2𝐶 log(𝑁)2

log(log(𝑁))
,

as required, where 𝑡 = −1/ log((1 + 𝜌)/2) for convenience. (It is not hard to show that this
choice of 𝑘′𝑖 and ℓ is optimal up to constants by solving a simple convex optimization problem,
though we do not do so here.) We note that, even at this optimal size of the 𝑘𝑖 and ℓ, the
dominant cost of communication comes from the Merkle proofs of the opening of the rows of
the matrix 𝑋, rather than from the field elements in the provided rows. This likely points to
a potential source for cost savings.

16

6.5 Extensions
A simple extension of the protocol is to allow the prover to commit to a matrix �̃�1 which lies
in a subfield 𝐅′ ⊆ 𝐅 of the main field. This makes the openings over the rows of 𝑋1 smaller,
which, in turn, decreases the communication complexity of the protocol for the first round.
We use this flexibility in what follows.

7 Numerics
In this section, we present some numerical results for the protocol. Our implementa-
tion is written in Julia, a high level language for scientific computing, and uses the
CryptoUtilities.jl package for fast cryptographic operations in binary fields. This pack-
age includes a fast Reed–Solomon encoding library based on the algorithms described
in [Lin+16]. All code for this work is available at

https://github.com/bcc-research/Ligerito.jl

Numerical experiments. In this set of numerical experiments, we choose the binary field
|𝐅| = 2128 as the main field and 𝐅′ ⊆ 𝐅 with |𝐅′| = 232 as the subfield in the first round.
As in the asymptotic section, we assume that all of the matrices 𝐺𝑖 are Reed–Solomon code
matrices, each with rate 𝜌 = 1/4. We assume 𝜆 = 100 bits of security, making |𝑆𝑖| = 148 (if
ℓ ≤ 8, which is the case here). We choose ℓ by performing a grid search over the possible values
of ℓ = 1,…, 8 and choose the {𝑘𝑖} and {𝑘′𝑖} by using a simple rounding scheme on the solution
to a simple convex program, given ℓ; for more details, see the code. We run the prover on an
M1 MacBook Pro with 64 GB of RAM and report our times (and proof sizes) below. Since the
MacBook Pro has 8 performance cores (and 2 efficiency cores), we run the prover on 8 threads.

Coefficient count Proof size Proving time
220 145 KiB .08 s
224 255 KiB 1.3 s
228 360 KiB 21 s
230 420 KiB 80 s

Table 1 : Proof size and time for various multilinear polynomials over |𝐅′| = 232 on 8 threads of an
M1 MacBook Pro (64 GB).

Note that the proof sizes can differ from run to run since the Merkle batched opening size
is not deterministic and depends on the exact rows opened. We also note that the scheme is
relatively memory efficient, with the prover using (asymptotically) a little over twice the size
of the largest encoded matrix 𝑋1 in the protocol.

17

https://github.com/bcc-research/Ligerito.jl

Coefficient count Polynomial size Polynomial encoding size Prover allocated memory
220 4 MiB 16 MiB 49 MiB
224 64 MiB 256 MiB 630 MiB
228 1 GiB 4 GiB 9.8 GiB
230 4 GiB 16 GiB 31 GiB

Table 2 : Total allocated memory for the prover, relative to the size of the largest matrix 𝑋1 in the
protocol, with rate 𝜌 = 1/4.

We note that this is the total allocated memory for the prover during proving time, not the
highest amount of memory used at any one time, which is likely much closer to the polynomial
encoding size. This suggests that modern phones (which, almost universally, have at least 1
GiB of RAM) should be able to run the protocol for polynomials of size 224 or so, even if the
expected proving time is on the order of a few seconds.

8 Conclusion
In this note, we presented a new polynomial commitment scheme and inner product protocol,
Ligerito. We showed that it is a concretely small and fast protocol that is practical for even
relatively large circuits, while also being asymptotically efficient. Given that large, practical
circuits are currently on the order of around 224 or so constraints, this sets basic groundwork
for the ability to do ‘real-time proving’ of blockchains—i.e., the ability to prove that the state
transition function of a blockchain is correct within the allowed blocktime—or the ability to
prove important, but smaller circuits (degree 220 or so) on mobile devices such as phones.

9 Acknowledgements
We would like to thank Philip Jovanovic, Giacomo Fenzi, Nicolas Mohnblatt, Remco Bloe-
men, Alex Evans, and Kobi Gurkan for discussions, comments, and suggestions.

Bibliography
[KZG10] A. Kate, G. Zaverucha, and I. Goldberg, “Constant-size commitments to poly-

nomials and their applications,” in Advances in Cryptology–ASIACRYPT 2010:
16th International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 5�9, 2010. Proceedings 16, 2010, pp.
177–194.

[Ame+17] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam, “Ligero: Lightweight
Sublinear Arguments Without a Trusted Setup,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, Dallas Texas
USA: ACM, Oct. 2017, pp. 2087–2104. doi: 10.1145/3133956.3134104.

18

https://doi.org/10.1145/3133956.3134104

[Ben+18] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Fast Reed-Solomon
Interactive Oracle Proofs of Proximity,” pp. 1–17, 2018, doi: 10.4230/
LIPICS.ICALP.2018.14.

[ZCF23] H. Zeilberger, B. Chen, and B. Fisch, “BaseFold: Efficient Field-Agnostic Polyno-
mial Commitment Schemes from Foldable Codes.” [Online]. Available: https://
eprint.iacr.org/2023/1705

[Bre+24] M. Brehm, B. Chen, B. Fisch, N. Resch, R. D. Rothblum, and H. Zeilberger,
“Blaze: Fast SNARKs from Interleaved RAA Codes.” [Online]. Available:
https://eprint.iacr.org/2024/1609

[Arn+24] G. Arnon, A. Chiesa, G. Fenzi, and E. Yogev, “WHIR: Reed–Solomon Proximity
Testing with Super-Fast Verification.” [Online]. Available: https://eprint.iacr.
org/2024/1586

[EMA25] A. Evans, N. Mohnblatt, and G. Angeris, “ZODA: Zero-Overhead Data Avail-
ability.” [Online]. Available: https://eprint.iacr.org/2025/034

[EA23] A. Evans and G. Angeris, “Succinct Proofs and Linear Algebra.” [Online]. Avail-
able: https://eprint.iacr.org/2023/1478

[AER24] G. Angeris, A. Evans, and G. Roh, “A Note on Ligero and Logarithmic Random-
ness.” [Online]. Available: https://eprint.iacr.org/2024/1399

[DG24] B. E. Diamond and A. Gruen, “Proximity Gaps in Interleaved Codes.” [Online].
Available: https://eprint.iacr.org/2024/1351

[DP24] B. E. Diamond and J. Posen, “Proximity Testing with Logarithmic Random-
ness,” IACR Commun. Cryptol., vol. 1, no. 1, p. 2, 2024, doi: 10.62056/
AKSDKP10.

[Ben+23] E. Ben-Sasson, D. Carmon, Y. Ishai, S. Kopparty, and S. Saraf, “Proximity Gaps
for Reed–Solomon Codes,” Journal of the ACM, p. 3614423, Aug. 2023, doi:
10.1145/3614423.

[Tha22] J. Thaler, “Proofs, Arguments, and Zero-Knowledge,” Foundations and
Trends® in Privacy and Security, vol. 4, no. 2–4, pp. 117–660, 2022, doi:
10.1561/3300000030.

[DP25] B. E. Diamond and J. Posen, “Succinct Arguments over Towers of Binary Fields,”
in Advances in Cryptology – EUROCRYPT 2025, S. Fehr and P.-A. Fouque, Eds.,
Cham: Springer Nature Switzerland, 2025, pp. 93–122.

[Lin+16] S.-J. Lin, T. Y. Al-Naffouri, Y. S. Han, and W.-H. Chung, “Novel Polynomial
Basis With Fast Fourier Transform and Its Application to Reed–Solomon Era-
sure Codes,” IEEE Transactions on Information Theory, vol. 62, no. 11, pp.
6284–6299, 2016, doi: 10.1109/TIT.2016.2608892.

19

https://doi.org/10.4230/LIPICS.ICALP.2018.14
https://doi.org/10.4230/LIPICS.ICALP.2018.14
https://eprint.iacr.org/2023/1705
https://eprint.iacr.org/2023/1705
https://eprint.iacr.org/2024/1609
https://eprint.iacr.org/2024/1586
https://eprint.iacr.org/2024/1586
https://eprint.iacr.org/2025/034
https://eprint.iacr.org/2023/1478
https://eprint.iacr.org/2024/1399
https://eprint.iacr.org/2024/1351
https://doi.org/10.62056/AKSDKP10
https://doi.org/10.62056/AKSDKP10
https://doi.org/10.1145/3614423
https://doi.org/10.1561/3300000030
https://doi.org/10.1109/TIT.2016.2608892

	Introduction
	Structure of this note.

	Notation and conventions
	Basic notation
	Matrix and polynomial notation
	Matrices to vectors (and back).
	Kronecker product.
	Polynomials and vectors.

	Matrix-vector product protocol
	Prover algorithm.
	Verifier algorithm.
	Guarantees.
	Communication complexity.
	Discussion.

	Partial sumcheck protocol
	High level protocol
	Partial sumcheck protocol
	Prover algorithm.
	Verifier algorithm.
	Guarantees.
	Discussion.

	Observations
	Inner products.
	Batching evaluations.
	Gluing sumchecks.
	Complete batched and glued sumcheck.

	Matrix-vector product with partial sumcheck
	Prover algorithm.
	Verifier algorithm.
	Guarantees and discussion.

	Ligerito
	High level idea
	Protocol algorithms
	Prover algorithm.
	Verifier algorithm.
	Discussion.

	Guarantees
	Proof.

	Communication complexity
	Asymptotics.

	Extensions

	Numerics
	Numerical experiments.

	Conclusion
	Acknowledgements
	Bibliography

