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Abstract

In this paper, we introduce a family of games called the concave pro-rata games.
In this game, players place their assets into a pool which then pays out some concave
function of all assets placed into it. Each player then receives a pro-rata share of the
payout; i.e., each player receives an amount proportional to how much they placed
in the pool. Such games appear in a number of practical scenarios, including as a
simplified version of certain batched decentralized exchanges, such as those proposed by
Penumbra. We show that this game has a number of interesting properties, including
a symmetric pure equilibrium that is the unique equilibrium of this game, and we
prove that its price of anarchy is Ω(n) in the number of players. We also show some
numerical results in the iterated setting which suggest that players quickly converge to
an equilibrium in iterated play.

Introduction

Existing blockchain systems come to consensus on transactions in batches, called blocks. Yet
the economic mechanisms those transactions interact with are generally designed to process
each individual transaction sequentially, making their behavior reliant on the ordering of
transactions within the batch. This abstraction mismatch is the primary source of miner
extractable value (MEV), defined as economic value that can be captured by the block
proposer (originally the miner) who selects and sequences the transactions to be included in
the batch [DGK+20].

However, rather than trying to blind the block proposer, or choose a “fair” ordering
(which is difficult, if not impossible, to construct in any direct sense on current systems)
within a batch, we could alternatively attempt to design economic mechanisms which do
not depend on the order of transactions within a block, and instead, process each batch of
transactions ‘all at once’. These mechanisms would then be aligned with the actual ordering
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provided by the consensus mechanism, stepping from one batch of transactions to the next
in the same discrete time steps in which consensus happens.

One such mechanism is a ‘pro-rata mechanism’. In this mechanism, there is some known
notion of value: for example, every user might want to trade some asset A for another, say
B, and everyone ‘pitches in’ some amount of asset A into a pool. After everyone has placed
their amounts, the pool, as a whole, is traded on an exchange for some amount of asset
B, and the resulting amount of asset B is distributed back to each player, in proportion to
how much of asset A each player placed in the pool. It is not difficult to show that such
a mechanism has the desired property: the order in which players placed asset A into the
collective pool does not change how much of asset B each player receives. Using some ideas
from cryptography, this game can additionally be implemented in a way that does not reveal
any one player’s contributions or identity [Pen], and so may be considered a simultaneous
game.

On the other hand, mechanisms of this form often lead to interesting phenomena as users
must now consider the possible actions of other users when planning their own actions. A
natural framework to study these kinds of problems, where players must reason about the
strategies of other players, recursively, is via game theory and the study of the equilibria
of games [VNM07]. This paper serves to cleanly set up the game resulting from a pro-rata
mechanism in a simple mathematical framework and derive a number of useful results for
such games.

This paper. The paper is organized as follows. We introduce the concave pro-rata game
in §1 and show a few interesting properties under mild conditions. Such properties include
the existence and uniqueness of a symmetric pure strategy equilibrium and an explicit way
of efficiently computing this equilibrium by solving a single variable, unimodal optimization
problem. We also show some simple bounds for the price of anarchy. In §2 we then describe
how this type of game connects to a recent proposal for a batched decentralized exchange.
Finally, in §3, we run a number of simulations illustrating the price of anarchy and showing
that in the iterated setting agents appear to converge quickly to the specified equilibrium.

1 The concave pro-rata game

We will define the pro-rata game with n players as the game with the following payoff for
player i = 1, . . . , n:

Ui(x) =
xi

1Tx
f(1Tx). (1)

Here, f : R+ → R is some function satisfying f(0) = 0, while x ∈ Rn
+ is a nonnegative vector

whose ith entry is the action performed by the ith player. We will say the game is a concave
pro-rata game if the function f is a concave function. This game has a simple interpretation:
every player ‘pitches in’ some amount xi into a pool, totaling 1Tx, and the pool pays out
f(1Tx) depending only on the total amount pitched in by all players. The amount paid
out by the pool is then distributed among the players in a pro-rata way; i.e., each player i
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receives an amount proportional to how much she put into the pool. For the remainder of
this paper, we will assume that the function f is concave. We note that concave pro-rata
games consist of a special case of aggregative games in which the payoff of each player is a
function of their strategy and the sum of the strategies of all players (cf., [Sel70]).

Concavity. The payoff Ui is concave in the ith entry, holding the remaining entries con-
stant. To see this, first define y = 1Tx− xi (i.e., y is the sum of all entries of x except the
ith entry). Overloading notation slightly for Ui, we have that

Ui(xi, y) =
xi

xi + y
f(xi + y).

We can write Ui(·, y) as the composition of the following two functions

Ui(xi, y) = g(xi, h(xi)),

where
g(xi, t) = tf

(xi

t

)
and h(xi) =

xi

xi + y
,

which are defined for nonnegative real inputs. We will use this rewriting to show that this
function is concave in xi, since, using the basic convex composition rules (cf., [BV04, §3.2.4])
it suffices to show that (a) h is concave and (b) g is concave and nondecreasing in its second
argument.

First, note that h is (strictly) concave since

h(xi) = 1− y

xi + y
,

which is evidently (strictly) concave in xi since y is a constant. We can see that g is jointly
concave in its arguments as it is the perspective transform of the function f , which preserves
concavity (cf., [BV04, §3.2.6]). Finally, we need to show that g is nondecreasing in its second
argument. To see this, let 0 ≤ t ≤ t′, then we have

g(xi, t
′) = t′f

(xi

t′

)
= t′f

(
t

t′
xi

t
+

(
1− t

t′

)
0

)
≥ tf

(xi

t

)
+

(
1− t

t′

)
f(0) = tf

(xi

t

)
= g(xi, t).

(2)

The inequality follows from the definition of concavity, while the second-to-last equality
follows from the fact that f(0) = 0.

Selfish maximum. The fact that g is nondecreasing in its second argument also has an
interesting consequence: a player never does better in the pro-rata game when compared to
the ‘selfish’ version. In other words, for a fixed xi, player i has the largest payoff when all
other players j ̸= i have xj = 0. This is easy to see since

t =
xi

1Tx
≤ 1
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so
Ui(x) = g(xi, t) ≤ g(xi, 1) = f(xi),

where g is as defined above. The inequality follows from the monotonicity of g in its second
argument.

Strict concavity. In the important special case where f satisfies

f(αt) > αf(t), (3)

for every t > 0 and 0 < α < 1, then the function Ui(·, y) is strictly concave in its first
argument. (We will show this soon.) Property (3) has the interpretation that any chord of
the function, drawn between (0, 0) and any other point on the graph, lies strictly below the
function itself. For example, a sufficient condition is that the function f is strictly concave,
though this condition is not a necessary one as there are functions which are not strictly
concave that satisfy (3). See appendix A for a more general condition.

Since we know that h is a strictly concave function and g is a concave function, we can
show that g(xi, h(xi)) is strictly concave in xi by showing that g is strictly increasing in its
second argument. Strict concavity of g follows from the usual composition rules (see [BV04,
§3.2.4]). To show that g is strictly increasing in its second argument, let 0 < t < t′, then:

g(xi, t
′) = t′f

(xi

t′

)
= t′f

(
t

t′
xi

t

)
> t′

t

t′
f
(xi

t

)
= tf

(xi

t

)
= g(xi, t),

where the inequality follows from an application of (3) with α = t/t′.

Definitions. For completeness, we state several important definitions [VNM07] from game
theory. To each player i = 1, . . . , n, we associate a strategy, which is a probability distribution
πi over the possible actions of player i, the nonnegative real numbers. We say a strategy is
pure if πi is a deterministic distribution or point mass. In other words, we say a strategy is
pure when the probability of choosing a specific action z is always one; i.e., πi({z}) = 1 for
some z ≥ 0. Otherwise, we say the strategy is mixed.

A Nash equilibrium (simply an equilibrium from here on out) is a collection of strategies
πi for each player i = 1, . . . , n such that no individual player can achieve a strictly better
outcome by choosing a different strategy. Concretely, let xi ∼ πi be a random variable chosen
by player i’s strategy (mixed or pure) and let yi ∼ π−i be a random variable denoting the
sums of random variables from other players’ strategies. The collection of strategies (πi)
consists of an equilibrium if, for each player i, we have

Exi∼πi, yi∼π−i
[Ui(xi, yi)] ≥ Exi∼π̃i, yi∼π−i

[Ui(xi, yi)] ,

where π̃i denotes any strategy. (For the remainder of the paper, we will drop the xi and
yi in the definition of the expectation to shorten notation.) If the above condition holds
with strict inequality for all i except when π̃i = πi, the equilibrium is said to be strict.
In words, an equilibrium is strict if each player would achieve a strictly worse outcome by
choosing a different strategy. In general, we say an equilibrium is pure if all strategies of
that equilibrium are pure, and mixed otherwise.
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Pure equilibria. With those definitions, we note that the strict concavity of Ui(xi, y) in xi

has an important, direct consequence: every equilibrium of this game is a pure equilibrium.
Let xi ∼ πi be any strategy that is not pure, while yi ∼ π−i is a random variable denoting
the sums of the other players’ strategies, then

Eπi,π−i
[Ui(xi, yi)] = Eπ−i

[Eπi
[Ui(xi, yi)]] < Eπ−i

[Ui(Eπi
[xi], yi)] ,

where the strict inequality is a result of strict concavity of Ui(·, y) for all y and the fact
that πi is not a point mass. In other words, if xi ∼ πi is a mixed strategy for player i,
then this player is always strictly better off playing the pure strategy Eπi

[xi] instead. For
the remainder of this paper, we will assume that f is concave and satisfies condition (3),
unless otherwise stated. Additionally we will only discuss pure equilibria for the remainder
of the paper, as all equilibria must be pure, so talking about a strategy as as a specific action
xi ∈ R+ is reasonable.

Extension. A simple immediate extension to the concave pro-rata game is to consider
payoff functions of the form:

Ui(x) =
cixi

cTx
f
(
cTx
)
,

for some strictly positive vector c ∈ Rn
++. In this case, all of the same properties given above

apply to this slightly more general game, but we will only consider the (often useful) special
case where c = 1.

1.1 Symmetric pure strict equilibrium

There is a strict, pure equilibrium where all players have equal strategies, given by x = (q/n)1
where q is the optimizer of the following problem:

maximize qn−1f(q)

subject to q ≥ 0,
(4)

with variable q ∈ R. We will show some properties of this result first and then show that
the pure strategy x = (q/n)1 is, indeed, an equilibrium.

Solution properties. This problem has a (unique) and finite solution q > 0 provided
f(z) > 0 and f(w) = 0 for some 0 < z < w. The fact that q > 0 follows by noting that that
q must satisfy qn−1f(q) ≥ zn−1f(z) > 0 since it is optimal. On the other hand, the fact that
q is finite follows from the fact that, for any r ≥ w, we have

w

r
f(r) +

(
1− w

r

)
f(0) ≤ f(w) = 0,

where the first inequality follows from the definition of concavity. Since, by assumption,
f(0) = 0 and w/r > 0, we have that f(r) ≤ 0 so r cannot be optimal. (In fact, both
statements combined prove the stronger fact that 0 < q < w, but this is not necessary for

5



what follows.) The uniqueness of the solution to problem (4) follows from observing that
the logarithm of the objective function is strictly concave. (This is true since log is strictly
increasing and log ◦f is concave if f is concave.)

Equilibrium properties. The collection of strategies x = (q/n)1 is clearly pure and
symmetric. To see that x = (q/n)1 is a strict equilibrium, note that the best response for
any player i, when every other player plays strategy q/n is:

maximize
xi

xi + (1− 1/n)q
f(xi + (1− 1/n)q)

subject to xi ≥ 0,
(5)

with variable xi ∈ R. We will show that the solution to (5) is xi = q/n in two steps. First,
we will show that any solution must have xi > 0 and therefore that the first order optimality
conditions applied to the objective suffice. We will then show that xi = q/n is a solution to
the optimality conditions. This result, combined with the fact that the objective is strictly
concave, implies that xi = q/n is the unique solution to the optimality conditions, which
proves the final claim that this equilibrium is strict.

To see that any solution to the best response problem (5) must have xi > 0, note that
q/n is feasible and achieves an objective value of f(q)/n > 0, which is strictly greater than
the objective value of zero achieved by xi = 0.

Next, note that q > 0 must satisfy the first order optimality conditions of (4):

(n− 1)f(q) + qf ′(q) = 0. (6)

On the other hand, the first order optimality conditions for the objective of problem (5) are
that xi must satisfy (writing q′ = (1− 1/n)q for convenience)

q′

xi + q′
f(xi + q′) + xif

′(xi + q′) = 0.

Choosing xi = q/n clearly satisfies this condition, since plugging this value in gives(
1− 1

n

)
f(q) +

qf ′(q)

n
=

1

n
((n− 1)f(q) + qf ′(q)) = 0,

as required. Since the objective is strictly concave, this is the unique xi satisfying the
optimality conditions and is therefore the best response. Additionally, while we have assumed
that f is differentiable, a very similar proof using subgradient calculus gives an identical
result.

1.2 Uniqueness of equilibrium

In fact, it is not hard to show that the symmetric, pure, strict equilibrium is, surprisingly,
the unique equilibrium for this game, under the same conditions as (4); i.e., that f(z) > 0
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and f(w) = 0 for some 0 < z < w. This proof can be broken down into a few steps. First,
we will show that any equilibrium x satisfies f(1Tx) > 0 and xi > 0 for each i. This will
then be used to show that there is no non-symmetric equilibrium, and, since we know that
any symmetric equilibrium must satisfy equation (4), which has a unique solution, we then
know that it is the unique equilibrium of this game.

Positivity of equilibria. First we will show that f(v) > 0 for every 0 < v < w. To
see this, note that the function f is bounded from below by all of its chords, as it is a
concave function. Note that the chord with endpoints (0, 0) and (z, f(z)) lies above the
x-axis, except at (0, 0), while the chord with endpoints (z, f(z)) and (w, f(w)) = (w, 0) lies
above the x-axis, except at (w, 0), which leads to the final result.

Now, suppose a collection of (pure) strategies satisfies f(1Tx) < 0. Since f(0) = 0, there
is some index i such that xi > 0. This implies that Ui(xi,1

Tx − xi) < 0. But then player
i can achieve a payoff equal to 0 by employing the strategy x̃i = 0, which is strictly better
than a negative payoff, so x cannot be an equilibrium.

On the other hand, if a collection of strategies satisfies f(1Tx) = 0, then, from the
previous discussion, we must have either 1Tx = 0 or 1Tx = w. If 1Tx = 0, any player i can
obtain a strictly positive payoff by playing the strategy x̃i = z. If, instead, 1Tx = w > 0,
there is some index i such that xi > 0. We have that the player’s payoff is Ui(xi,1

Tx−xi) = 0
which means that

Ui(xi − ε,1Tx− xi) =
xi − ε

1Tx− ε
f(1Tx− ε) > 0,

for ε > 0 small enough since f(w − ε) > 0, so x is not an equilibrium.
Putting all of these statements together means that any equilibrium x satisfies f(1Tx) > 0

and 1Tx < w. To see that any equilibrium must also satisfy x > 0, note that if there exists
an index i with xi = 0 for a collection of strategies with f(1Tx) > 0, player i can always
achieve a strictly positive payoff by playing x̃i = ε > 0, for ε small enough.

Symmetry of equilibria. Next, we will show that if xi is a best response for player i,
then any j for which xj > xi is not a best response for player j, and vice versa. This will
immediately show that any equilibrium must satisfy xi = xj (i.e., it is symmetric). We will
show this in the case that f is differentiable, but a similar proof holds in the more general
case, using subgradient calculus.

Let x be an equilibrium with xj > xi. Given that xi is a best response, then the optimality
conditions for (5) imply that:(

1Tx− xi

(1Tx)2

)
f(1Tx) +

xi

1Tx
f ′(1Tx) = 0.

Since x is an equilibrium, from the previous discussion, we have that f(1Tx) > 0, xi > 0,
and 1Tx > xi, so f ′(1Tx) < 0. On the other hand, differentiating the objective of the best
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response problem (5) for player j gives(
1Tx− xj

(1Tx)2

)
f(1Tx) +

xj

1Tx
f ′(1Tx) <

(
1Tx− xi

(1Tx)2

)
f(1Tx) +

xi

1Tx
f ′(1Tx) = 0,

where the inequality follows from the fact that, since xi < xj we have

1Tx− xj

(1Tx)2
<

1Tx− xi

(1Tx)2
and

xj

1Tx
>

xi

1Tx
,

so xj cannot be a best response as it is not optimal for (5). The converse case, when xj < xi

with xi being a best response, follows from a nearly identical proof. This immediately
implies that any equilibrium must be symmetric, so, from the preceding discussion, the
unique equilibrium is the one given by the solution to problem (4).

1.3 Equilibrium payoff

Conditioned on each player receiving the same payoff (a fairness condition), the optimal
allocation every player would get is

1

n
sup f,

which is, by definition, at least as good as the equilibrium payoff:

1

n
f(q),

where q > 0 is the solution to (4). In fact, we can show that the optimal fair allocation
is always strictly better than the equilibrium payoff. To see this, note that, under the
assumptions on f introduced above, we know sup f is achieved by some value 0 < q⋆ < w,
satisfying f ′(q⋆) = 0. Rearranging the first order optimality condition for q in problem (4)
gives

f ′(q) = −(n− 1)
f(q)

q
< 0,

for all n > 1 since f(q) > 0. This means that q does not satisfy the optimality condition for
maximizing f , so f(q) < f(q⋆) = sup f . (In fact, this says slightly more: using the concavity
of f , we have that q > q⋆, i.e., that players ‘overpay’ at equilibria when n > 1.)

Price of anarchy. Given the same assumptions as the beginning of §1.2 on the function
f , it is not difficult to show that the price of anarchy satisfies

sup f

f(q)
≥ Ω(n)

as the number of players n becomes large. To see this, consider the first order optimality
conditions for q (4):

(n− 1)f(q) + qf ′(q) = 0.
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Rearranging and using the fact that f ′ is nonincreasing and q ≤ w, we have

f(q) = −qf ′(q)

n− 1
≤ −wf ′(w)

n− 1
≤ O

(
1

n

)
whenever n > 1. Finally, since we know that sup f is constant in the number of players, then

sup f

f(q)
≥ Ω(n).

(In fact, if the function f ′ is continuous, it is easy to show that the price of anarchy is
actually equal to Θ(n) by using the fact that q ↑ w as n becomes large.)

2 Batched decentralized exchanges

In this section, we will show some basic applications of the above properties to a batched
decentralized exchange, which we describe below.

Decentralized exchanges. A decentralized exchange (or DEX, for short) is a type of
exchange that exists on a blockchain. Such exchanges enable any agent to trade currencies
without the need for a centralized intermediary. In many cases, these exchanges are organized
as constant function market makers (see, e.g., [AAE+22] for a general introduction to this
type of exchange), a special type of automated market maker that uses a specific function
to price assets.

Batched DEXs. A batched decentralized exchange is a DEX where the trades are batched
before they are executed. Specifically, the trades are aggregated in some way (depending
on the type of batching performed) and then traded ‘all together’ through the DEX, before
being disaggregated and passed back to the users. Though the idea of a batched exchange has
been proposed many times in different contexts (see, e.g., [BCS15] and [Wal18]), presently,
almost all major decentralized exchanges are not batched. Recent work has suggested that
batching is useful for privacy [CAE22] and Penumbra [Pen] has proposed a design for a
fully-private decentralized exchange which makes use of batching as a method for avoiding
certain information leakage [AEC21]. We describe a very simplified version of this proposal
below, which will suffice for our discussion.

Batching design. In this scenario, we have traders i = 1, . . . , n who all wish to trade some
amount, say ∆i ∈ R of asset A for some other asset, which we will call asset B. In this case,
negative values of ∆i denote that trader i wishes to receive some amount of asset A (and will
instead tender asset B to the protocol). For convenience, we will assume that 1T∆ > 0, i.e.,
on net, traders want more of asset B than asset A. The batching protocol of penumbra first
clears all trades to get a nonnegative vector of ‘residual’ trades ∆′ ∈ Rn

+ with 1T∆ = 1T∆′.
(In other words, the protocol does not generate debts in any one side.) We can view ∆′ as the
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‘excess demand’ for asset B over A and leave the mechanism for constructing ∆′ otherwise
unspecified, requiring only the additional condition that, if ∆ ≥ 0, then ∆′ = ∆. (This
condition can be roughly stated as: if the only trades are due to excess demand, then no
clearing happens.) The protocol then pools the residual demand, 1T∆′ and trades it against
a constant function market maker, represented by some function g, to receive g(1T∆′) of
asset B, which it then distributes to each agent i in a pro-rata way, leading to an identical
form to that of the pro-rata payoff (1) with x = ∆′. Constant function market makers always
have concave g, known sometimes as the forward exchange function (cf., [AAE+22, §4]), with
g(0) = 0, and, in many practical cases, these functions are strictly concave.

2.1 Arbitrage

A common way of analyzing markets is through the lens of arbitrage: the ability to exploit
price differences in order to make essentially risk-free profit. From before, we will write g for
the forward exchange function of a constant function market maker, used by the batching
design presented above.

Existence. Assuming g is differentiable at 0, we can interpret g′(0) as the marginal amount
of asset B that one would receive for a marginal amount of A. (The function g is often not
differentiable at 0, but is one-sided differentiable at 0+, which suffices.) If g′(0) is larger than
the price of an external market, say c > 0, then anyone who can directly trade with g can
make risk-free profit by trading some (potentially small) amount, t > 0 of asset A for g(t)
of asset B, and then sell this amount of asset B to get g(t)/c− t > 0 of profit. (One simple
way to see this is true is to use the definition of a derivative on g(t)/c and send t ↓ 0.)

Optimal arbitrage. Since an agent can make risk-free profit in these cases, it is reasonable
to ask: what is the maximum amount of profit an agent can make with this strategy? This
is known as the optimal arbitrage problem, written:

maximize g(t)− ct

subject to t ≥ 0,

with variable t ∈ R. From before, if we know that g′(0) > c, then this problem has an
optimal value that is strictly positive. If g is differentiable, the optimal solution t⋆ satisfies

g′(t⋆) = c,

which we can see from the first-order optimality conditions for this problem. This has the
interpretation that the marginal price of the CFMM after the trade t⋆, given by g′(t⋆) should
be equal to the price of the external market, which we defined to be c.

The (aggregated) arbitrage game. In the batched exchange above, arbitrageurs cannot
directly trade with the constant function market maker, but must instead go through the
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batching process. Assuming there are n arbitrageurs competing to maximize their profit,
the next question is: what are the properties of this game? Defining

f(t) = g(t)− ct,

then this game is a concave pro-rata game with function f , since the payoff (1) for player i
is

Ui(xi, yi) =
xi

xi + yi
f(xi + yi) =

xi

xi + yi
g(xi + yi)− cxi.

Note that this is exactly the amount received from the DEX with forward exchange function
g, minus the cost of trading xi with the external market, for player i. This game inherits all
of the properties derived in §1. We show some numerical simulations of iterated behavior
for some utility functions of this form in the next section.

3 Numerics

The results of §1 provide insight into the equilibrium behavior of concave pro-rata games.
Here we explore the transient behavior of such games through simulation.

Game setup. Suppose that the game is played iteratively, and, at each iteration t, player i
chooses some action xt

i as the best response to the actions chosen by the other players in the
previous round (denoted as xt−1

−i ), possibly subject to additional constraints. We consider
the following scenarios:

1. At iteration t, player i takes action equal to the best response to xt−1
−i .

2. At iteration t, player i takes action equal to the best response to xt−1
−i subject to a

budget constraint (xt
i ∈ [0,Mi]).

Payoff functions. For these simulations, we use functions f of the form f(t) = g(t)− ct
where c > 0 and g(t) = γR2t

R1+γt
with 0 < γ ≤ 1, R1, R2 > 0. The function g(t) is the forward

exchange function for a Uniswap V2 swap pool with reserves R ∈ R2
+ and fee parameter

γ when asset 1 is being tendered and asset 2 is being received. This setting simulates n
arbitrageurs competing to maximize their profit, where c denotes the external market price
of asset 2. For simulations using a somewhat more simple payoff function, see appendix §C.
Note that f is strictly concave and therefore satisfies condition (3), and clearly f(0) = 0.

Shared equilibrium. The (unique) symmetric pure equilibrium strategy is the solution
to problem (4). This is easy to compute using the first order optimality conditions for
problem (4) given in (6). Plugging in this particular form of f , we obtain the following
quadratic equation:

(cnγ2)q2 + q(γ2R2 + 2cnR1γ − γ2nR2) + (cnR2
1 − γnR1R2) = 0. (7)

The equilibrium is then given by xi = q/n, for each player i = 1, . . . , n where q denotes the
positive root of (7).
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Figure 1: Number of iterations to reach equilibrium versus the number of players in Scenario
1.

Best responses. The best response of player i, given the budget constraint 0 ≤ xi ≤ Mi

and other players’ strategies yi = 1Tx− xi, is given by

maximize U(xi, yi)

subject to xi ∈ [0,Mi],
(8)

with variable xi ∈ R. This is a single-variable convex optimization problem that is easily
solved in practice by any number of off-the-shelf packages [DB16, OCPB16]. When xi is
unconstrained, the optimal value of (8) is given by

xi =
1

γ

(√
γR1R2 + γ2R2y

c
−R1

)
− y

For more details, the code is available at

https://github.com/bcc-research/concave-pro-rata-code

Simulation results. In our simulations, we fix γ = 0.99, R1 = 200, R2 = 250, and c = 1.
We average each reported value over 100 trials. In figure 1, the initial strategy of each
player is drawn uniformly at random from the interval (0, w/n), where w is a value such that
f(w) = 0.
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Figure 2: Percent increase in whale strategy and whale profit versus the number of fish when
compared to the unconstrained equilibrium strategy and profit.

Figure 1 illustrates that the number of iterations needed to reach the unique equilibrium,
in the absence of budget constraints, scales superlinearly in the number of players. We define
the number of iterations to reach equilibrium as the number iterations until the strategy of
every player is equal to the unique equilibrium up to the first decimal place; i.e., the first
round t such that

max
i

|xt
i − x⋆| < 0.1,

where x⋆ denotes the equilibrium strategy.
In figure 2, we consider the setting where there is one player who has unlimited budget

(whom we will call a whale) and all remaining players have some budget Mi < q/n (these
players are referred to as fish). The budgets of the fish are drawn uniformly from the interval
Mi ∼ [0, q/n] and the initial strategy of each fish is drawn uniformly at random from the
interval [0,Mi]. The equilibrium strategy chosen by the fish is to use their entire budget,
while the whale chooses a strategy in excess of the unconstrained equilibrium strategy and
is, as a result, able to extract greater profit. Figure 2 illustrates that the whale chooses an
increasingly large strategy and receives an increasing profit as the number of fish increases.

Price of anarchy. In §1 we established the order of growth of the price of anarchy. Here
we illustrate the price of anarchy numerically for the specific family of payoff functions
introduced previously in this section. We again fix γ = 0.99, R1 = 200, R2 = 250 and c = 1.
The left plot of figure 3 illustrates the optimal payoff function and the equilibrium payoff
function as a function of the number of players n while the right plot of figure 3 illustrates
the price of anarchy as function of n.

4 Conclusion

We introduced concave pro-rata games and established several useful properties under rela-
tively mild conditions. In particular, we showed the existence of a unique equilibrium that
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Figure 3: (Left) Individual payoff of a player versus the number of players. (Right) Ratio of
the optimal payoff divided by the equilibrium payoff versus the number of players.

is symmetric and pure. This equilibrium can be computed efficiently by solving a single
variable, unimodal optimization problem. We further established that the price of anarchy
is Ω(n) in the number of players, relative to the optimal ‘fair’ allocation. We illustrated how
concave pro-rata games connect to a recent proposal for a batched decentralized exchange
and numerically studied the behavior of agents engaged in such a game in the iterated set-
ting for a specific form of utility function. Future work includes further study of the optimal
arbitrage problem for batched decentralized exchanges.
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A Relaxing strict concavity

We do not, in fact, need strict concavity in the proofs above. Instead, we only need that f
has ‘some curvature’ at 0. Specifically, it suffices that for all t and t′ such that 0 < t < t′,
we have

f(t) >
f(t′)

t′
t.

Written in English, this is the condition that the chord from 0 to t always lies strictly below
the function. This condition is sometimes difficult to confirm for general functions f , so
we will show that this is equivalent to the (potentially simpler-to-handle) property that all
supergradients at 0 lie strictly above the function at all points. We will show that, for any
concave function f : R+ → R with f(0) = 0, the following two statements are equivalent:
(a) there is some s′ > 0 and α ∈ R such that for every s with 0 ≤ s ≤ s′ we have

f(s) = αs,
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and (b) there exists some 0 < t < t′ such that

f(t)

t
=

f(t′)

t′
. (9)

The statement above follows from the negation of both (a) and (b). This equivalence has a
simple interpretation: if the point (0, 0) is collinear with any other two points on the graph
of f , {(s, f(s)) | s > 0}, then the function f is a piecewise function with a linear segment
starting at 0. The converse of this is that if the function f has no linear segment around
0 (i.e., every linear overestimator around 0 lies strictly above f) then any chord must lie
strictly below the function.

Proof. The forward implication is very easy: pick t′ = s′ and let t be any 0 < t < s′, then
we have

f(t′)

t′
= α =

f(t)

t
.

Now we’ll consider the reverse implication. Given 0 < t < t′ satisfying (9), we will show
that, for any 0 ≤ s ≤ t we have

f(s) =
f(t)

t
s,

which satisfies the original claim with α = f(t)/t. First, it is easy to show that

f(s) ≥ f(t)

t
s, (10)

since
f(s) = f

(s
t
t+
(
1− s

t

)
0
)
≥ s

t
f(t),

where the inequality follows from the concavity of f and the fact that f(0) = 0. We will
now show that any function f satisfying (10) strictly, i.e.,

f(s) >
f(t)

t
s, (11)

for some 0 < s < t cannot be concave. The result follows from the contrapositive. To see
this, let 0 < γ ≤ 1 such that t = γs+ (1− γ)t′, then

γf(s) + (1− γ)f(t′) > γ
f(t)

t
s+ (1− γ)

f(t)

t
t′ = f(t) = f(γs+ (1− γ)t′),

so f cannot be concave. The inequality follows directly from conditions (9) and (11), and
both the first and second equalities follow from the definition of γ.
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B Rosen condition

Pro-rata games, even concave ones, do not satisfy the Rosen condition [Ros65] for the unique-
ness of equilibria in concave games. The Rosen condition for uniqueness is that if, there exists
some z ≥ 0 with z ̸= 0 such that

Φ(x) =

z1∂1U1(x)
...

zn∂nUn(x)


is a strictly monotone operator; i.e., for any x ̸= y we have

(y − x)T (Φ(y)− Φ(x)) > 0,

then there is a unique equilibrium that is also pure. (Here, ∂i denotes the ith partial
derivative.) This is a common condition used to prove the uniqueness of pure equilibria in
games. We will show that this condition does not hold in general for concave pro-rata games,
even under most ‘niceness’ assumptions such as strict concavity or even strong concavity and
differentiability.

Setting 2x = y = 1 then the condition can be written as (using the definition of U)

(1T z/2)((1/n)(f ′(n)− f ′(n/2)) + (1− 1/n)(f(n)− 2f(n/2))) > 0,

but this can be rewritten (since 1T z > 0)

(1/n)(f ′(n)− f ′(n/2)) + (1− 1/n)(f(n)− 2f(n/2)) > 0,

which is clearly not true for all concave functions f , since picking f(t) = min{t, 3n} suffices.
(A mollifying argument would show that this also gives a reasonable counterexample even in
the case that f is strictly concave and differentiable.) A more direct counterexample that is
differentiable and strictly concave is f(t) = (4n)2 − (4n− t)2, which is slightly more difficult
to verify.

C Additional Numerics

Here we expand on the simulations introduced in §3 using a class of utility function that
allows us to express many quantities of interest in closed form.

Game setup. We consider the following three scenarios:

1. At iteration t, player i takes action equal to the best response to xt−1
−i .

2. At iteration t, player i takes action equal to the best response to xt−1
−i subject to a

bounded update constraint (|xt
i − xt−1

i | ≤ δ).

3. At iteration t, player i takes action equal to the best response to xt−1
−i subject to a

budget constraint (xt
i ∈ [0,Mi]).

17



Figure 4: (Left) Number of iterations to reach equilibrium versus the number of players in
Scenario 1. (Right) Number of iterations to reach equilibrium versus δ in Scenario 2 (with
n = 10 players).

Payoff functions. For these simulations, we use functions f of the form f(t) = tβ − γt
where 0 < β < 1 and γ > 0. Note that f is concave as it is the sum of two concave functions
and f(0) = 0. These functions also satisfy the strict concavity property (3) since

f(αt) = αβtβ − αγt > αtβ − αγt = αf(t),

for 0 < α < 1.

Shared equilibrium. The (unique) symmetric pure equilibrium strategy is the solution
to problem (4). This is easy to compute using the first order optimality conditions for
problem (4) given in (6). Plugging in this particular form of f , we have:

(n− 1)(qβ − γq) + q(βqβ−1 − γ) = 0,

which has a solution

q =

(
β + n− 1

nγ

)1/(1−β)

.

The equilibrium is then given by xi = q/n, for each player i = 1, . . . , n.

Simulation results. In our simulations, we fix β = 0.5 and γ = 0.05. We average each
reported value over 100 trials. In figure 4, the initial strategy of each player is drawn
uniformly at random from the interval (0, w/n), where w is a value such that f(w) = 0.

The left plot of figure 4 illustrates that the number of iterations needed to reach the
unique equilibrium, in the absence of budget constraints, scales superlinearly in the number
of players. The right plot demonstrates that in the scenario of bounded strategy updates, for
small values of δ, the number of iterations required to reach equilibrium increases significantly
when compared to the unbounded strategy update scenario.

18



Figure 5: Percent increase in whale strategy and whale profit versus the number of fish when
compared to the unconstrained equilibrium strategy and profit.

In figure 5, we consider the setting where there is one player who has unlimited budget
(whom we will call a whale) and all remaining players have some budget Mi < q/n (these
players are referred to as fish). The budgets of the fish are drawn uniformly from the interval
Mi ∼ [0, q/n] and the initial strategy of each fish is drawn uniformly at random from the
interval [0,Mi]. The equilibrium strategy chosen by the fish is to use their entire budget,
while the whale chooses a strategy in excess of the unconstrained equilibrium strategy and
is, as a result, able to extract greater profit. Figure 5 illustrates that the whale chooses an
increasingly large strategy and receives an increasing profit as the number of fish increases.

Price of Anarchy The equilibrium payoff can easily be found to be

1

n
f(q) =

(
n+ β − 1

γn

)β/(1−β)(
1− β

n2

)
.

Similarly, it can be show that the optimal payoff conditioned on every agent receiving the
same payoff is given by

1

n
sup f =

(
β

γ

)β/(1−β)(
1− β

n

)
.

We obtain the price of anarchy by taking the ratio of the equilibrium payoff and the optimal
payoff:

sup f

f(q)
= n

(
βn

n+ β − 1

)β/(1−β)

.

We again fix β = 0.5 and γ = 0.05. The left plot of figure 6 illustrates the optimal payoff
function and the equilibrium payoff function as a function of the number of players n while
the right plot of figure 6 illustrates the price of anarchy as function of n.
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Figure 6: (Left) Individual payoff of a player versus the number of players. (Right) Ratio of
the optimal payoff divided by the equilibrium payoff versus the number of players.
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