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Abstract

In this paper, we derive a number of interesting properties and extensions of the
convex flow problem from the perspective of convex geometry. We show that the sets of
allowable flows always can be imbued with a downward closure property, which leads to
a useful ‘calculus’ of flows, allowing easy combination and splitting of edges. We then
derive a conic form for the convex flow problem, which we show is equivalent to the
original problem and almost self-dual. Using this conic form, we consider the nonconvex
flow problem with fixed costs on the edges, i.e., where there is some fixed cost to send
any nonzero flow over an edge. We show that this problem has almost integral solutions
by a Shapley–Folkman argument, and we describe a rounding scheme that works well
in practice. Additionally, we provide a heuristic for this nonconvex problem which is a
simple modification of our original algorithm. We conclude by discussing a number of
interesting avenues for future work.

1 Introduction

Network flows model systems in a wide range of applications, from flows of cars to flows
of bits. Traditional network flow models assume a linear input-output relationship for each
edge: the flow out of an edge is a linear function of the flow into that edge, and an ex-
tensive literature covers the theory, algorithms, and applications of these models. (See,
e.g., [AMO88], [Wil19], and references therein.) Unfortunately, many real-world systems do
not exhibit this linear relationship. For example, in many practical cases, the output of an
edge is a concave function of the input. While nonlinear cost functions have also been ex-
tensively explored in the literature (e.g., see [Ber98] and references therein), nonlinear edge
flows—when the flow out of an edge is a nonlinear function of the flow into it—has received
considerably less attention despite its increased modeling capability.

To model these systems, [DAE24] introduced the convex flow problem, which generalizes
the traditional network flow problem to allow for concave input-output relationships and
hypergraph structures. This problem also generalizes and extends those considered in [Tru78;
Shi06; Vég14]. (See [DAE24] for additional discussion of this problem and related literature.)
In this paper, we explore the geometry of the convex flow problem to elucidate a number of
interesting properties, many with immediate practical implications.
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We begin by requiring a downward closure property on the sets of allowable flows. We
prove that requiring this property is equivalent to requiring that the utility functions are
nondecreasing, as in [DAE24]. Having downward closed allowable flows has a number of im-
portant implications. First, downward closure allows for a useful ‘calculus’ of flows, enabling
the straightforward merging and splitting of network edges. These composition rules have
immediate practical implications for solvers.

Second, we derive a conic form for the convex flow problem, which we show is equivalent to
the original problem. This conic form allows us to derive a number of theoretical properties,
including a dual that closely resembles the original problem, coming close to the self-duality
of Bertsekas’ extended monotropic programming problem [Ber08].

Finally, the conic problem allows us to extend our analysis to nonconvex flow problems
where each edge has an associated fixed cost for sending any nonzero flow, a scenario that
commonly appears in real-world problems. We show, via an application of the Shapley–
Folkman lemma, that this nonconvex flow problem has ‘almost’ integral solutions and propose
a simple modification to the algorithm from [DAE24] to accommodate these nonconvex
scenarios.

Outline. In section 2, we define the convex flow problem and discuss interpretations. We
also prove the equivalence between requiring nondecreasing utility functions and requiring a
downward closure condition on the sets of allowable flows. In section 3, we show a number
of composition rules of downward closed sets which preserve the downward closure. Then, in
section 4, we derive an equivalent conic form for the convex flow problem and show that this
conic form is almost self-dual. Finally, we consider the nonconvex flow problem with fixed
costs on the edges in section 5. We show that this problem is intimately related to the conic
form of the convex flow problem described in the previous section and that it has ‘almost’
integral solutions.

2 Problem set up

In this section, we present the convex flow problem, first defined in [DAE24], give a few
simple properties, and discuss some important special cases.

2.1 Problem definition

The convex flow problem is the following problem:

maximize U(y) +
∑m

i=1 Vi(xi)

subject to y =
∑m

i=1Aixi

xi ∈ Ti, i = 1, . . . ,m.

(1)

Here, the network utility function U : Rn → R ∪ {+∞} and the edge utility functions
Vi : R

ni → R∪{+∞} are concave and nondecreasing, the sets Ti ⊆ Rni are nonempty, closed,
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and convex, and the matrices Ai ∈ Rn×ni with ni ≤ n are selector matrices. Specifically, Ai

is a matrix of the form
Ai =

[
a1 . . . ani

]
, (2)

where each ak ∈ Rn is a distinct unit basis vector. The matrix Ai therefore maps the local
indices of edge i to the global indices. We also assume that an edge need not be used; i.e.,
that 0 ∈ Ti for all i. This condition makes the proofs simpler and can always be satisfied
by appropriately translating the problem variables and absorbing this translation into the
objective terms.

Interpretation: hypergraph flows. Following [DAE24], we can interpret this problem
as that of finding the highest-utility allowable flows over a hypergraph with n nodes and
m edges, which may be incident to more than two vertices. The variable xi indicates the
flow over the ith hyperedge, which is adjacent to ni vertices. By convention, we use positive
numbers to denote flows out of an edge (equivalently, into a node) and negative numbers
to denote flow into an edge (equivalently, out of a node). For example, (xi)k > 0 is the
flow out of the ith edge and into the edge’s kth incident vertex. Flows xi over edge i must
lie in Ti, the set of allowable flows. The selector matrices map these edge flows to their
corresponding vertices so that yj is the net flow at node j = 1, . . . , n. Figure 1a illustrates
this interpretation.

Interpretation: bipartite graph. Alternatively, we may interpret this problem as find-
ing the highest-utility flows over a bipartite graph. Here, a set of m vertices S1 is connected
to a set of n vertices S2. We denote the flow from node i ∈ S1 to its kth incident node in S2

by xik. The vector xi is then the set of all flows incident to vertex i ∈ S1, and we it must
lie in the set Ti. Again, positive numbers denote flows from S1 to S2, and negative numbers
denote flows in the opposite direction. The selector matrices Ai map the flows on edge i to
their incident vertices in S2. Thus, yj is the net flow at node j ∈ S2. Figure 1b illustrates
this interpretation.

Examples. A number of optimization problems from the literature are special cases of (1).
Classic problems, including maximum flow, minimum cost flow, and multi-commodity flows,
and their generalization to concave edge input-output relationships, naturally fit into this
framework. In engineering, this framework models the problems of optimal power flow and
resource allocation in wireless networks, which both have nonlinear edge flow relationships.
In economics, this framework includes and generalizes the classic Fisher market model equi-
librium problem. And, in finance, this framework models trading through multiple markets,
where the output of a market is often a concave function of the input—the more one trades,
the worse the price one gets. See [DAE24, §3] for details and discussion of these examples.
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(b) Bipartite graph interpretation

Figure 1: A hypergraph with 3 edges and 4 nodes (left) and its corresponding bipartite graph
representation (right).

2.2 Downward closure and monotonicity

We say that a set T ⊆ Rn is downward closed if, for any x ∈ T and x′ ≤ x, we have x′ ∈ T .
In other words, if a flow is feasible, then any smaller flow is also feasible. If x′ ≥ x, we say
that the flow x′ dominates the flow x, since, under any nonnegative utility function, the flow
x′ is always at least as ‘good’ as x. In [DAE24], the authors assumed that the functions
U and {Vi} in the convex flow problem are nondecreasing. This assumption is, in fact,
equivalent to the sets {Ti} being downward closed in the following sense: if the sets {Ti} are
downward closed, then the functions U and {Vi} can be replaced with their nondecreasing
concave envelopes without affecting the optimal objective value. Similarly, if the functions U
and {Vi} are nondecreasing, then the sets {Ti} can be replaced by their downward closures,
i.e.,

T̃i = Ti −Rn
+,

without affecting the objective value. This downward closedness property has a number of
immediate and useful implications.

Example. As a simple example, consider a directed edge i with maximum input capacity
1 that, when w units of flow enter the edge, outputs h(w) units of Flow. The corresponding
set of allowable flows is

Ti = {z ∈ R2 | −1 ≤ z1 ≤ 0 and z2 ≤ h(−z1)}.

This set is easily verified to be closed and convex, as it is the intersection of two halfspaces
and the hypograph of a concave function, but note that it is not downward closed. Figure 2
shows a Ti and its downward closure T̃i. The downward closure clearly satisfies the same
properties: it is also closed and convex. We show next that, in a general sense, the set T
and its downward closure T̃ are ‘equivalent’ for problem (1) if the functions U and {Vi} are
nondecreasing.
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Figure 2: A set of allowable flows T (left) and its downward closure T̃ (right) for a two-node
directed edge that, for input w, outputs h(w) = w/(1 + w) units of flow.

Equivalence proof. Consider a finite solution (y⋆, {x⋆
i }) to (1). If the objective functions

are nondecreasing, then U(x′) ≤ U(x) for any x′ ≤ x, and similarly for the functions {Vi}. If
this solution is not at the boundary, i.e., if there exists some x⋆

i in the relative interior of the
corresponding Ti, then we can find a nonnegative direction d ∈ Rni such that x⋆

i + td ∈ Ti

for some t > 0. Since the objective functions are nondecreasing, this new point will have
a objective value equal to the original solution. As a result, there exists a solution at the
boundary, and we can replace the sets {Ti} with their ‘downward extension’,

T̃i = Ti −Rn
+,

without affecting the solution.
Conversely, if the sets are downward closed and the optimal value is finite, then, by the

downward closure of the Ti, there does not exist a nonpositive direction d such that, for
some t > 0, x⋆

i + td ∈ Ti and the objective value is larger. (Otherwise, we could find a
new point dominated by x⋆

i , i.e., in the downward closure of Ti, with a higher objective
value.) Equivalently, all subgradients at this solution must be nonnegative: ∂U(y⋆) ⊆ Rn

+

and ∂Vi(x
⋆
i ) ⊆ Rni

+ for i = 1, . . . ,m. This fact immediately suggests that there exists a
solution on the boundary and we can replace the objective functions with their monotonic
concave envelopes without affecting the solution. We will give an alternate proof of this
equivalence in §B, after we have derived a dual problem for (1).

3 A calculus of flows

In light of the previous discussion, we will assume that the sets of allowable flows {Ti} are
downward closed for the remainder of this paper. We next discuss a number of properties that
directly follow from this condition. Much of this section generalizes the authors’ previous
work in the context of automated market makers [Ang+23, §2]. In the remainder of this
section, we will drop subscripts for convenience.
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Definition and interpretation. Recall that a set of allowable flows T can be any set
satisfying the following properties:

1. The set T is closed and convex.

2. The set T is downward closed: if x ∈ T and x′ ≤ x, then x′ ∈ T .

3. The set T contains the zero vector: 0 ∈ T .

The three conditions imposed on the set of allowable flows have a natural interpretation.
Convexity means that as more flow enters an edge, the marginal output does not increase.
Downward closure means that positive flow (i.e., flow out of an edge) can be dissipated. This
property often has a nice interpretation. In power systems, it means that we can dissipate
power by, for example, adding a resistive load. In financial markets, it means that we have
the option to ‘overpay’ for an asset. Finally, the last condition means that we need not use
an edge. This assumption is not fundamental; we can always translate a set T and absorb
the translation into the utility functions. This assumption, however, will simplify some of
the proofs later in this paper.

3.1 Composition rules

As a result of the downward closure condition, sets of allowable flows satisfy certain compo-
sition rules. Many of these rules follow directly from the calculus of convex sets [BV04, §2.3].
For example, the intersection of two sets of allowable flows yields another set of allowable
flows. We discuss a few important composition rules that will be useful in the rest of this
paper below.

Nonnegative matrix multiplication. Multiplication of a set of allowable flows by a
nonnegative matrix A ∈ Rp×k with N (A) = {0}, followed by taking the downward closure,
results in another set of allowable flows:

AT −Rp
+ = {x | x ≤ Ax′ for some x′ ∈ T}.

This resulting set is downward closed by definition, and also closed and convex. Convexity
follows from the fact that convexity is preserved under linear transforms [BV04, §2.3.2] and
under downward closure. Closedness of the set follows from [Roc70, Theorem 9.1], as we
require A to be injective. This set has a nice interpretation: given some x ∈ T , each element
of the vector Ax is a weighted ‘meta-flow’ with weights given by the rows of A.

Lifting. As a special case of nonnegative matrix multiplication, the lifting of a set of
allowable flows into a larger space is also a set of allowable flows. Specifically, let A be a
selector matrix (as defined in (2)). Then the set AT −Rk

+ is a set of allowable flows in Rk′ .
This set describes an edge that connects k′ vertices but only allows flow between a subset of
k of them.
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Figure 3: We take the Minkowski sum of the sets of allowable flows T and T̃ for two directed
edges with the form of that in figure 2 (left and middle) to obtain a new set of allowable flows
T + T̃ that corresponds to an undirected edge (right).

Set addition. Finally, under an additional boundedness assumption, the Minkowski sum
of allowable flow sets T and T̃ ,

T + T̃ = {x+ x̃ | x ∈ T, x̃ ∈ T̃},

is also a set of allowable flows. For this composition rule, we require that the sets are bounded
from above: for a set T , there exists some b such that x ≤ b1 for all x ∈ T . This condition
means that a bounded input flow cannot produce infinite output flow. We can interpret the
combined set T + T̃ as an aggregate edge that can use either of the two original edges; see
the example in figure 3.

Aggregate edges. Using the previous two rules, we can combine edges with possibly non-
overlapping incident vertices. Importantly, we can view the net flow vector y in (1) as the
flow over an ‘aggregate edge’ that connects all vertices with associated allowable flows

T =
m∑
i=1

(AiTi −Rni
+ ) .

Thus, when the edge utility functions are equal to zero, the convex network flow problem (1)
is equivalent to the following problem over one large aggregate edge:

maximize U(y)

subject to y ∈ T .

While this particular rewriting is not immediately useful, combining or splitting certain
trading sets, for example those with the same incident vertices, can sometimes help us
compute a solution more efficiently. (See [DAE24, §4-5]) for details.)

Example. Often, a directed edge between two nodes has a gain function defined in a
piecewise manner. For example, consider a financial market between two assets given by an
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order book: sellers list the amount of one asset they are willing to sell for the other at a given
price. We can view each ‘tick’ as an individual linear edge, which, when combined, define
an aggregate edge corresponding to the entire orderbook. We provide a simple example in
figure 4.
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Figure 4: Each tick of the orderbook (left) corresponds to a linear edge with a coefficient corre-
sponding to the price (middle). These linear edges can be combined into an aggregate edge defining
the entire orderbook (right).

4 The conic problem

In this section, we will introduce what looks like a restriction of problem (1), which we will
call the conic network flow problem, defined as

maximize U(y) +
∑m

i=1 Vi(xi)

subject to y =
∑m

i=1Aixi

xi ∈ Ki, i = 1, . . . ,m.

(3)

This problem set up is identical to that of (1), except that the sets Ki, instead of being
downward closed convex sets, are downward closed convex cones. A set Ki is called a cone
if it satisfies the following property: if x ∈ Ki, then, for any α ≥ 0, we must have that
αx ∈ Ki. We call any downward closed convex cone Ki an allowable flow cone.

Certainly, every conic flow problem (3) is an instance of a convex network flow problem (1)
as every downward closed convex cone is also, by definition, a downward closed convex set.
In this section, we will show that the converse is also true: every instance of a convex network
flow problem can be turned into an instance of a conic network flow problem. In this sense,

8



problem (1) and problem (3) are equivalent. We will use the conic problem (3) for the
remainder of this paper to give a number of important theoretical properties, extensions,
and a duality result, all of which easily translate to the original (1), but are much simpler
in the conic formulation.

4.1 Basic properties

All of the composition rules presented in §3.1 for the allowable flow sets also hold for the
allowable flow cones. More specifically, given two allowable flow cones (i.e., cones that are
downward closed) summation, intersection, nonnegative scaling, and nonnegative injective
matrix multiplication all yield another allowable flow cone.

Cone is nonpositive. One immediate consequence of the fact that a K ⊆ Rd is both a
cone and downwards closed is that either K = Rd or K contains no strictly positive vectors;
that is,

K ∩Rd
++ = ∅.

To see this, let x ∈ K be any element of K that has only strictly positive entries x > 0.
Then for every d vector y ∈ Rd, there exists some α ≥ 0 such that y ≤ αx. Since αx is in
K, as it is a cone, and K is downward closed, then y ∈ K, as required.

Polar cone. As is standard in convex optimization, given a cone K ⊆ Rd there exists a
polar cone, defined

K◦ = {y ∈ Rd | yTx ≤ 0 for all x ∈ K}. (4)

This cone K◦ is always a closed convex cone (even when K is not). If K is also a closed
convex cone, then we have the following duality result (−K◦)◦ = −K; in other words, the
polar cone of the negative polar cone (called the dual cone) is the negation of the original
cone. If, in addition, the coneK is a downward closed cone with any strictly negative element
(i.e., there is some x ∈ K with x < 0), then we must have that

K◦ ∩ −Rd
+ = {0}.

(A sufficient condition for this to hold is, e.g., if the cone K has nonempty interior, which is
almost always the case in practice.)

4.2 Reduction

It is clear that the conic problem (3) is a special case of the original problem (1). In this
subsection, we will show that the converse is also true: any instance of the original problem
can be reduced to an instance of the conic problem.
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High level outline. We begin with an instance of (1), which we write again for conve-
nience:

maximize U(y) +
∑m

i=1 Vi(xi)

subject to y =
∑m

i=1Aixi

xi ∈ Ti, i = 1, . . . ,m.

(1)

As in (1) we have some nondecreasing convex network utility function U : Rn → R∪{−∞},
edge utility functions Vi : R

ni → R ∪ {−∞}, selector matrices Ai ∈ Rn×ni , and downward
closed sets Ti ⊆ Rni . (From the previous discussion in section 2.2, we need to require only
one of downward closure or montonicity.) The variables are the edge flows xi ∈ Rni and the
network flows y ∈ Rn. Our goal will be to construct some (simple) nondecreasing net utility
function Ũ : Rn+1 → R ∪ {−∞}, edge utility functions Ṽi : R

ni+1 → R ∪ {−∞}, selector
matrices Ãi ∈ R(n+1)×(ni+1), and downward closed convex cones K̃i ⊆ Rni+1, such that any
solution to the corresponding conic problem (3) over these new functions, matrices, and sets,

maximize Ũ(ỹ) +
∑m

i=1 Ṽi(x̃i)

subject to ỹ =
∑m

i=1 Ãix̃i

x̃i ∈ K̃i, i = 1, . . . ,m,

can be (easily) converted to a solution for the original problem (1). We do this process in
two steps. First, we define a basic cone K̃i associated with each Ti, which is essentially the
perspective transformation of Ti, done in such a way as to ensure that K̃i is downward closed
when Ti is. We then show that any solution over this cone, with an additional constraint,
always corresponds to a solution to the original set. Finally, we add this constraint to the
objective as an extra term in the edge cost Ṽi.

4.2.1 Flow cone

We define the flow cone corresponding to a set Ti ⊆ Rni as

K̃i = cl{(x,−λ) ∈ Rni ×R | x/λ ∈ Ti, λ > 0}, (5)

where cl denotes the closure of a set. This definition is just the perspective transformation
of the set Ti, with a sign change in the last argument. This set is closed (by definition) and
convex (see [BV04, §2.3.3]). It is also downward closed, which we show in appendix A. We
can write the downward closedness of the flow cone in the following (slightly more useful)
way: given any λ′ such that −1 ≤ λ′ ≤ 0 then

(x, λ′) ∈ K̃i implies (x,−1) ∈ K̃i. (6)

Recovering the set. We make use of the following (perhaps obvious) observation repeat-
edly. The set Ti can be easily recovered from the cone K̃i by restricting the last coordinate
to be equal to −1; that is,

Ti = {x ∈ Rni | (x,−1) ∈ K̃i}, (7)

which follows by definition.
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Boundary. From the flow cone and downward closure, we may define the set Ti via the
homogenous, nondecreasing, convex function

φi(x) = min{λ ≥ 0 | (x,−λ) ∈ Ki}.

Equivalently, we may write φi as the Minkowski functional

φi(x) = inf{λ > 0 | x/λ ∈ Ti},

This function’s one-level set, φi(x) = 1 parameterizes the boundary of Ti. When φi has a nice
closed form, this function can be useful in practical applications (see, for example [Dia+23]).

4.2.2 Rewriting via the flow cone

We start with the original problem (1). Using the cone defined previously in equation (7),
we rewrite the original problem using the flow cone as

maximize U(y) +
∑m

i=1 Vi(xi)

subject to y =
∑m

i=1 Aixi

(xi, λi) ∈ K̃i, i = 1, . . . ,m

λi ≥ −1, i = 1, . . . ,m,

(8)

where we have relaxed the constraint that λi = −1 to an inequality. This relaxation is exact
by the ‘dominating points’ result (6): any solution with (xi, λi) may be replaced with a
solution (xi,−1) which is also feasible, so xi ∈ Ti by (7). Indeed, in many cases, such as
when the set Ti is locally strictly concave around 0, one can show that if λ > −1, there exists
a strictly dominating point x′

i such that x′
i > xi and (x′

i,−1) ∈ K̃i, so choosing λi > −1 is
never optimal.

4.2.3 Final rewriting

Finally, we will take the conic relaxation given in (8), which, due to the constraint λi ≥ −1
is not quite a conic flow problem (3), and replace the matrices Ai, edge cost functions Vi,
and variables (xi, λi) to get a problem of the required form.

The first part is easy: let I(z ≥ −1) = 0 if z ≥ −1 and +∞ otherwise be the nonnegative
indicator function for a scalar. Note that I is nonincreasing so −I is nondecreasing, which
means we can rewrite (8) by pulling the constraint into the objective

maximize U(y) +
∑m

i=1 Vi(xi)− I(λi ≥ −1)

subject to y =
∑m

i=1Aixi

(xi, λi) ∈ K̃i, i = 1, . . . ,m.

(9)

Finally, we define the matrix

Ãi =

[
Ai 0
0 1

]
.
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which is just the matrix Ai with an additional row and column. Setting x̃i = (xi, λi) gives
the final result:

maximize Ũ(ỹ) +
∑m

i=1 Ṽi(x̃i)

subject to ỹ =
∑m

i=1 Ãix̃i

x̃i ∈ K̃i, i = 1, . . . ,m,

(10)

where we have defined

Ṽ (xi, λi) = Vi(xi)− I(λi) and Ũ(y, λ̃) = U(y).

This problem is exactly of the form of the conic flow problem (3), as required.

4.3 Duality

Now that we know problem (1) and problem (3) are essentially equivalent (even though
the conic problem (3) ‘seems’ more restrictive) we give a dual reformulation of (3) that is
‘almost’ self-dual in this section.

4.3.1 Dual problem

We will write a simple dual for the conic problem (3) using standard duality results and a
basic rewriting of the problem.

Lagrangian. First, we write problem (3) here again for convenience:

maximize U(y) +
∑m

i=1 Vi(xi)

subject to y =
∑m

i=1Aixi

xi ∈ Ki, i = 1, . . . ,m.

(3)

We pull the conic constraint xi ∈ Ki into the objective by defining the indicator functions

I(xi ∈ Ki) =

{
0 xi ∈ Ki

+∞ otherwise,

for i = 1, . . . ,m. We can then rewrite the conic problem as

maximize U(y) +
∑m

i=1 Vi(xi)− I(x̃i ∈ Ki)

subject to y =
∑m

i=1Aixi

x̃i = xi, i = 1, . . . ,m,

where we have introduced the new redundant variables x̃i ∈ Rni for each i = 1, . . . ,m.
This resulting problem is just a convex problem with linear constraints. Introducing the
Lagrange multipliers ν ∈ Rn for the first equality constraint and ηi ∈ Rni for the second
equality constraint, we get the Lagrangian:

L(x, x̃, y, ν, η) = U(y) +
m∑
i=1

(Vi(xi)− I(x̃i ∈ Ki)) + νT

(
y −

m∑
i=1

Aixi

)
+

m∑
i=1

ηTi (xi − x̃i).
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Dual function. To find the dual function (and therefore the dual problem) we partially
maximize L over the primal variables x, x̃, and y:

g(ν, η) = Ū(ν) +
m∑
i=1

V̄i(ηi − AT
i ν) +

m∑
i=1

Īi(ηi). (11)

Here we have defined

Ū(ν) = sup
y

(
U(y) + νTy

)
, V̄i(ξi) = sup

xi

(
Vi(xi) + ξTi xi

)
,

and the functions {Īi} as

Īi(ηi) = sup
x̃i

(
−I(x̃i ∈ Ki) + x̃T

i ηi
)
,

for each i = 1, . . . ,m. Note that the function Īi is simply the indicator for the polar cone of
Ki, defined in (4). In other words,

Īi(ηi) =

{
0 ηi ∈ K◦

i

+∞ otherwise.

Dual problem. The dual problem is then to minimize the dual function g; i.e.,

minimize g(ν, η).

When there exists a point in the relative interior of the domain, strong duality holds and,
therefore, the optimal values of the dual problem and the primal problem are identical.
Plugging in the definition of g from (11) into the objective of the dual problem, and pulling
out the indicator functions {Īi} into explicit constraints gives

minimize Ū(ν) +
∑m

i=1 V̄i(ηi − AT
i ν)

subject to ηi ∈ K◦
i , i = 1, . . . ,m.

We can rewrite the problem to make it more similar to the original (3). If we define ξi = AT
i ν

then

Dν =
m∑
i=1

Aiξi,

where D is a diagonal matrix

D =
m∑
i=1

AiA
T
i ,

with nonnegative diagonal entries. The jth diagonal entry, Djj, denotes the degree of node
j, for j = 1, . . . , n. The diagonal entries of D are strictly positive if the hypergraph cor-
responding to the Ai has no isolated nodes, or, equivalently, if, for each node j = 1, . . . , n
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there is some edge i = 1, . . . ,m such that the jth row of Ai is nonzero. In this case, which
we may always assume in practice by removing isolated nodes, the inverse of D exists so the
relationship between ν and the ξi is bijective. This means we can rewrite the dual problem:

minimize Ū(ν) +
∑m

i=1 V̄i(ηi − ξi)

subject to Dν =
∑m

i=1Aiξi

ηi ∈ K◦
i , i = 1, . . . ,m.

We may absorb the matrix D into the definition of Ū by replacing Ū(ν) with Ū(D−1ν) to
get the slightly more familiar-looking problem

minimize Ū(ν) +
∑m

i=1 V̄i(ηi − ξi)

subject to ν =
∑m

i=1Aiξi

ηi ∈ K◦
i , i = 1, . . . ,m.

(12)

The dual variables may be interpreted as node dual prices ν ∈ Rn and edge dual prices
ξi ∈ Rni , for i = 1, . . . , n. We call this problem the dual conic flow problem. Compare this
problem (12) with the original conic flow problem (3).

5 Fixed fees

Finally, we consider the convex network flow problem with fixed fees for the use of an edge.
In particular, we consider the following extension of the convex network flow problem (1),
which we call the network flow problem with fees :

maximize U(y) +
∑m

i=1 Vi(xi) + qiλi

subject to y =
∑m

i=1Aixi

(xi, λi) ∈ {0} ∪ (Ti × {−1}), i = 1, . . . ,m,

(13)

where the set up and variables are exactly those of the original convex flow problem (1)
except with the additional variable λ ∈ Rm and the problem data has the additional fee
vector q ∈ Rm

+ . This objective is also nondecreasing in all of its variables (as Vi and U are,
along with the fact that q ≥ 0). We note that this problem is not convex since the constraint
set is not convex (in fact, this constraint set is not even connected!) and the problem is
NP-hard to solve, which we prove shortly. However, we will show that this problem can be
approximately solved quite efficiently in practice and is intimately related to the conic form
problem (3) introduced in the previous section.

Interpretation. The interpretation of the constraint

(xi, λi) ∈ {0} ∪ (Ti × {−1}) (14)

is that if xi is nonzero, then λi = −1. In other words, if we use edge i by putting any nonzero
flow through it, then xi ̸= 0 and we are charged qi ≥ 0 for its use. In general, we note that
if qi > 0 and xi = 0, then we will have λi = 0 at optimality, so we may view λi as a variable
that indicates whether or not edge i is being used.
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NP-hardness. We show that the network flow problem with fees is NP-hard by reducing
the knapsack problem, which is known to be NP-hard [Kar72], to an instance of (13). The
knapsack problem is the following: given a vector of nonnegative integers c ∈ Zm

+ and some
integer b ≥ 0, find a binary vector z ∈ {0, 1}m such that cT z = b. This problem can be
reduced to an instance of (13) with n = 1 by setting U(y) = y − I(y ≥ b), Ai = 1 ∈ R,
Vi = 0, Ti = {z | z ≤ ci}, and q = c. The problem is

maximize −I(y ≥ b) + cTλ

subject to y =
∑m

i=1Aixi

(xi, λi) ∈ {(0, 0)} ∪ ((−∞, ci]× {−1}), i = 1, . . . ,m.

Note that cT (−λ) ≥ y for any feasible point. Since y is constrained to be at least b then
we have that cT (−λ) ≥ b for any feasible point. Finally, maximizing cTλ is the same as
minimizing cT (−λ) ≥ b, and equality is achieved if and only if there exists λ ∈ {−1, 0}m
such that cT (−λ) = b; or, equivalently, when the optimal objective value of this problem is
exactly equal to −b. If it were easy (i.e., polynomial time) to solve this problem, it would be
easy to find a solution to the knapsack problem by verifying that cT (−λ⋆) = b, or to assert
that no solution exists if the problem is infeasible or has optimal objective value larger than
−b, making this problem at least as hard as knapsack, which is known to be NP-hard.

5.1 Integrality constraint

For the sake of convenience, we will define the set

Qi = {0} ∪ (Ti × {−1}),

such that the constraint (14) can be written as

(xi, λi) ∈ Qi,

for each i = 1, . . . ,m. In a certain sense, this constraint encodes the ‘hard’ part of the
problem: if the set Qi were convex, then the problem would almost be a special case of the
original convex flow problem (1), by pulling the constraint that λi ≥ −1 into the objective.

Convex relaxation. Given the above discussion, we next examine the convex hull of Qi;
if we can easily write this convex hull in a compact way, then we immediately have a convex
relaxation of the potentially hard problem (13). In general, finding the convex hull of a set
may be challenging, e.g., even describing a convex hull can require an exponential number
of constraints. In this particular special case, we will show that the convex hull of the set Qi

is intimately related to the flow cone (5) introduced in the rewriting of the original convex
flow problem (1) into the conic flow problem (3). In many practical scenarios, finding the
flow cone Ki corresponding to the allowable flows Ti is fairly straightforward, which, in turn,
means that finding the convex hull of Qi is also fairly straightforward.
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Figure 5: The set Qi (left) and its convex hull conv(Qi) (right).

5.2 Convex hull

Given the above discussion, we will show that the convex hull of Qi, written conv(Qi),
is equal to all elements of the corresponding flow cone Ki when the elements’ last entry
(corresponding to λi) lies between −1 and 0. Written out we will show that:

conv(Qi) = Ki ∩ (Rn × [−1, 0]).

See figure 5 for an example. As a reminder, the flow cone Ki ⊆ Rn+1 for a given allowable
flow set Ti ⊆ Rn is defined, using (5), as

Ki = cl{(x,−λ) ∈ Rn ×R | x/λ ∈ Ti, λ > 0}.

To simplify notation, we define

K̄i = Ki ∩ (Rn × [−1, 0]), (15)

which is the cone Ki with the last element restricted to lie between −1 and 0. Of course,
this set is also convex as it is the intersection of two convex sets.

Reverse inclusion. First, we show the reverse inclusion: that K̄i ⊆ conv(Qi). Let
(x,−λ) ∈ K̄i (note the negative here) with λ > 0, then, we will show that (x,−λ) can be
written as the convex combination of an element in Ti × {−1} and the zero vector, and so
also must lie in conv(Qi). By definition, if (x,−λ) ∈ K̄i, then x/λ ∈ Ti for 0 < λ ≤ 1. But,
this is the same as saying

(x/λ,−1) ∈ Qi.

Finally, since 0 ∈ Qi, then any convex combination of 0 and (x/λ,−1) is in the convex hull
of Qi. Thus,

(x,−λ) = λ(x/λ,−1) + (1− λ)0 ∈ conv(Qi),
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so long as λ > 0. On the other hand, if λ = 0, then we know that x/λ′ ∈ Ti for all λ
′ > 0, so

(x, λ′) = λ′(x/λ′,−1) + (1− λ′)0 ∈ conv(Qi).

Sending λ′ → 0 gives the result, since Qi is closed as it is the union of two closed sets.
Putting it all together, this implies that conv(Qi) ⊇ K̄i.

Forward inclusion. Now, we show the forward inclusion: that conv(Qi) ⊆ K̄i. Note that
Qi ⊆ K̄i since, by definition

Ti × {−1} ⊆ K̄i,

and 0 ∈ K̄i, also essentially by definition. This immediately implies that

conv(Qi) ⊆ conv(K̄i) = K̄i

where we have used the fact that the convex hull of a convex set is itself.

Discussion. Putting the above two points together, we get the claim that

conv(Qi) = K̄i. (16)

In other words, the convex hull of the ‘hard’ set is exactly the flow cone Ki with the ad-
ditional constraint that the last entry must be restricted to lie between 0 and −1. One
interesting interpretation of this claim is that we may view the cone Ki as the conic com-
pletion of the set Qi. More generally, cone(Qi) is defined as the set containing all conic
(i.e., nonnegative) combinations of the elements of Qi. Since is it not hard to show that
cone(Qi) = cone(conv(Qi)), we have

cone(Qi) = cone(conv(Qi)) = cone(K̄i) = Ki,

where the second equality follows from (16), while the last simply follows from definitions.

5.3 Convex relaxation

Using the result (16) derived in the previous section, a convex relaxation of the network
problem with fees (13) is

maximize U(y) +
∑m

i=1 (Vi(xi) + qiλi)

subject to y =
∑m

i=1Aixi

(xi, λi) ∈ Ki, −1 ≤ λi ≤ 0, i = 1, . . . ,m.

(17)

Note that we have replaced the nonconvex constraint (xi, λi) ∈ Qi with the convex constraint
(xi, λi) ∈ conv(Qi), or, equivalently, using the facts derived in the previous section, replaced
it with the constraint that (xi, λi) ∈ Ki and −1 ≤ λi ≤ 0.
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Conic formulation. This convex relaxation is also a special case of the conic flow prob-
lem (3) in a very natural way. First, note that the constraint that λ ≤ 0 is redundant using
the definition of Ki. We may then pull the remaining constraint on λi, that λi ≥ −1 into
an indicator function, I(λi ≥ −1) and place it in the objective. This indicator function is
nonincreasing, so its negation is nondecreasing, and we get the final problem

maximize U(y) +
∑m

i=1 (Vi(xi) + qiλi − I(λi ≥ −1))

subject to y =
∑m

i=1Aixi

(xi, λi) ∈ Ki, i = 1, . . . ,m.

(18)

If we use the same trick used in §4.2 to rewrite the matrices Ai, we receive an instance of the
conic flow problem (3) since the objective is nondecreasing and the {Ki} are cones. Indeed,
the formulation found here (18) is essentially identical to the formulation found in (9), except
with the addition of the fixed costs q ≥ 0.

Integrality gap. In the previous argument in §4.2.2, we used the fact that, if λi > −1, then
we could set λi = −1 and always remain feasible with no change in objective value. However
in problem (18), the objective value would decrease, so this argument does not apply. We
will show next that we expect the solution to be close to integral in the special case that the
Vi = 0, which is common in practice (see, for example, the applications in [DAE24, §3]).

5.4 Tightness of the relaxation

Just how tight do we expect the relaxation to be? We will show that in the case that Vi = 0,
if m, the number of edges, is much larger than n, the number of nodes, then most of the λi

will be integral. More specifically, we will show that, given any solution to the relaxation, we
can recover a solution such that at least m− n− 1 indices i satisfy (xi, λi) ∈ Qi. If m ≫ n,
i.e., the number of nodes is much smaller than the number of edges, as is usually the case
in practice, then most of the solution is integral.

Shapley–Folkman lemma. We state the Shapley–Folkman lemma here in its standard
form. Let S1, . . . , Sm ⊆ Rn+1 be any subsets (convex or nonconvex) of Rn+1. Then, for any

y = x1 + · · ·+ xm,

where xi ∈ conv(Si) for i = 1, . . . ,m, there exists x̃i ∈ conv(Si) with i = 1, . . . ,m, such
that

y = x̃1 + · · ·+ x̃m,

which satisfy x̃i ∈ Si for at least m − n − 1 indices i. In other words, given any vector y,
which lies in the (Minkowski) sum of the convex hulls of the Si, we can find x̃i, which sum to
y, such that at least m−n−1 lie in the original sets Si, while the remainder lie in the convex
hull, conv(Si). Intuitively, this lemma states that the sum of convex sets becomes closer
and closer to its convex hull as the number of sets gets large. See figure 6 for an example.
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Figure 6: A visual representation of the Shapley–Folkman lemma for the (nonconvex) 1/2-norm
ball. As we take the Minkowski sum of the set with itself, it becomes closer and closer to its convex
hull, the 1-norm ball.

Given a solution to the convex relaxation (18), we will use this lemma to construct
a solution that has the same objective value as the original, yet almost all penalties λi

will be integral: either −1 or 0. This will then let us construct an approximate solution
to (13) and bound the difference between the optimal objective value of (13) and that of the
relaxation (17).

Constructing an approximate solution. Assume we are given feasible flows and penal-
ties for the relaxation; i.e., we have a solution {(x⋆

i , λ
⋆
i )} to the relaxation of the fixed-fee

problem (17). From this solution to the relaxation (17), we will construct a feasible point for
the original fixed-fee problem (13) which we will then show is ‘close’ to the optimal value,
under certain conditions. We write the exact problem we are considering (the special case
of (17) when Vi = 0) for convenience:

maximize U(y) + qTλ

subject to y =
∑m

i=1 Aixi

(xi, λi) ∈ K̄i, i = 1, . . . ,m.

Here, we have used the definition of K̄i from (15), and, from the previous discussion (16),
we know that K̄i = conv(Qi). First, note that, by definition

y⋆ =
m∑
i=1

Aix
⋆
i ,

and that (x⋆
i , λ

⋆
i ) ∈ conv(Qi) for i = 1, . . . ,m. Now, from the problem statement, we have

c = qTλ⋆,

with q ≥ 0, where c ≤ 0 stands for the ‘fixed cost’ part of the objective. Rewriting slightly,[
y⋆

c

]
=

m∑
i=1

[
Ai 0
0 qi

] [
x⋆
i

λ⋆
i

]
,

where (x⋆
i , λ

⋆
i ) ∈ K̄i, or, equivalently, using (16), (x⋆

i , λ
⋆
i ) ∈ conv(Qi), for i = 1, . . . ,m. From

the Shapley–Folkman lemma, there exist (x̃⋆
i , λ̃

⋆
i ) ∈ conv(Qi) such that[

y⋆

c

]
=

m∑
i=1

[
Ai 0
0 qi

] [
x̃⋆
i

λ̃⋆
i

]
,
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and at least m− n− 1 indices i satisfy (x̃⋆
i , λ̃

⋆
i ) ∈ Qi. In other words, if m ≫ n, we have an

‘almost’ feasible solution for the original problem (13), except for n + 1 indices i. Consider
these nonintegral indices, of which there are at most n + 1. In this case, we know, from
the dominated point condition (6) for Ki (and therefore for K̄i) that if (x̃

⋆
i , λ̃

⋆
i ) ∈ K̄i, then

(x̃⋆
i ,−1) ∈ K̄i. But we know that (x̃⋆

i ,−1) ∈ Qi, making this point also feasible for the
original problem (13). In English: if we were charged less than the full amount due to the
relaxation (i.e., we were charged qiλi), we can always choose to be charged the full amount
for the same flow (−qi) and be feasible for the original problem. This means that a feasible
solution for the original problem (13) will be to set

(x0
i , λ

0
i ) =

{
(x̃⋆

i , λ̃
⋆
i ) (x̃⋆

i , λ̃
⋆
i ) ∈ Qi

(x̃⋆
i ,−1) otherwise,

(19)

for i = 1, . . . ,m. Note that (x0
i , λ

0
i ) ∈ Qi for each i and so is a feasible point for the original

fixed-fee problem (13), leading to the same net flows y⋆ as the solution to the relaxation, but
the cost incurred, qTλ0 differs by at most

qT (λ0 − λ̃⋆),

from that of the relaxation, qT λ̃⋆ = c. Since most entries of λ0− λ̃⋆ are zero, by the previous
argument, then we expect this cost to be small. We give a simple bound on this, and therefore
in the objective gap between the relaxation and the original problem, in what follows.

Bounding the optimal objective value. Let p0 be the optimal objective value for the
relaxation (17) and let p⋆ be the optimal objective value for the original problem (13). Then,
since (17) is a relaxation of (13), we know that

p⋆ ≤ p0.

From the previous discussion, we have a feasible point (19) for the original problem. By
construction, we know that the net flows y⋆ remain unchanged, so the net utility U(y⋆) in
the objective similarly remains unchanged. On the other hand, the cost incurred qTλ0 is
larger than that of the relaxation, c, by qT (λ̃⋆ − λ0), so we have the following bound

p0 + qT (λ0 − λ̃⋆) ≤ p⋆ ≤ p0.

If we solved the relaxation, then we immediately have a two-sided bound on the optimal
objective value as given above. On the other hand, we can give a simple bound that does
not require solving the relaxation. Since we know that at most n+ 1 entries of λ0 will differ
from those of λ̃⋆ by Shapley–Folkman, then

p0 − (n+ 1)
(
max

i
qi

)
≤ p⋆ ≤ p0.

Or, equivalently
0 ≤ p0 − p⋆ ≤ (n+ 1)(max

i
qi).

20



5.5 Fixed cost dual problem

Finally, we derive the dual problem of the fixed-fee problem (13) with zero edge costs and
show that the algorithm developed in [DAE24] can still be applied to this problem with
minimal modifications. In fact, we lose little computational efficiently by solving the fixed-
fee problem directly; of course, the solution is not guaranteed to be optimal.

Dual function. Using a similar derivation to that in §4.3, we write the dual function as

g(ν) = Ū(ν) +
m∑
i=1

sup
(xi,λi)∈Qi

(
(AT

i ν)
Txi + λiqi

)
.

Note that the support function over Qi, i.e., the expression in the sum, can be easily evalu-
ated: we simply compute the support function of Ti less qi and compare this value to 0. If
we define

fi(ξ) = sup
xi∈Ti

ξTxi, (20)

then we can write
sup

(xi,λi)∈Qi

(
ξTxi + λiqi

)
= max {fi(ξ)− qi, 0} .

The optimal points for the support function are as follows. If fi(ξ) ≥ qi, then λ⋆
i = −1 and

x⋆
i can be any solution to the subproblem (20). On the other hand, if fi(ξ) ≤ qi, then λ⋆

i = 0
and x⋆

i = 0 is a solution. (There may be many solutions if fi(ξ) = qi.) This observation
allows us to apply the algorithm from [DAE24] ‘off the shelf’ to solve the dual problem.

Primal feasibility. By construction, using the λ⋆
i and x⋆

i from above always results in
integral solutions to the edge subproblem. Of course, these solutions may not be primal
feasible: the net flows y⋆ solving the Ū subproblem may not be equal to the sum of the
solutions x⋆

i to the edge subproblems; i.e., it is possible that

y⋆ =
m∑
i=1

Aix
⋆
i ,

is not true. However, we can always construct a primal feasible net flow ŷ using these
subproblem solutions {x⋆

i } by setting

ŷ =
m∑
i=1

Aix
⋆
i .

Verifying optimality. We can verify the optimality of the primal feasible point (ŷ, {x⋆
i })

by checking it’s objective value. From duality, we know that

g(ν⋆) = U(y⋆) ≥ U(ŷ).

If these values are equal, we know that the point (ŷ, {x⋆
i }) is also optimal.
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5.6 Numerical experiments

Here, we present some simple numerical experiments to illustrate the results of this section.
We emphasize the these experiments are by no means exhaustive, but we leave a more
thorough investigation to future work.

Setup. We consider the order routing problem from [Dia+23; Ang+22] with a network of
n assets and m = (1/4)n2 markets between these assets. Each market is a constant function
market maker [AC20; Ang+23] that allows trades between a randomly selected pair of assets
and has a strictly concave, increasing edge gain function. To interact with a market (i.e., to
use this edge), a trader must pay a fixed fee q0 ∈ R+. The trader’s goal is to maximize their
utility U(y) of the net trade y, given by

U(y) = cTy − µ

2
yTy,

where µ > 0 is some risk aversion parameter. The objective function is, therefore,

cTy − µ

2
yTy + q0(1

Tλ)

We solve the convex relaxation of the fixed fee problem (17) using the open-source convex
optimization solver Clarabel [GC24]. All code is available at

https://github.com/tjdiamandis/routing-theory-experiments.

low fee (q0 = 0.01) high fee q0 = 1.0

n m µ = 0 µ = 10−4 µ = 10−2 µ = 0 µ = 10−4 µ = 10−2

10 25 0 0 10 0 0 10
17 72 0 0 16 0 3 16
28 196 0 0 28 0 0 26
46 529 0 0 47 0 4 46
77 1,482 0 0 76 0 4 75
129 4,160 0 3 129 0 17 126
215 11,556 2 11 213 0 56 212
359 32,220 7 45 359 1 150 355
599 89,700 9 536 601 3 479 592
1,000 250,000 33 1,143 1,008 5 884 992

Table 1: Number of non-integral λi for the fixed fee problem relaxation.
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low fee (q0 = 0.01) high fee q0 = 1.0

n m µ = 0 µ = 10−4 µ = 10−2 µ = 0 µ = 10−4 µ = 10−2

10 25 8.20e-11 1.10e-10 9.11e-04 1.78e-09 4.26e-09 9.32e-02

17 72 3.44e-10 7.65e-10 8.83e-04 1.92e-08 6.04e-04 9.37e-02

28 196 1.12e-09 6.43e-10 6.99e-04 7.21e-09 4.77e-09 7.01e-02

46 529 2.28e-10 1.15e-10 7.61e-04 1.23e-08 2.60e-04 8.37e-02

77 1,482 2.77e-10 1.46e-10 8.42e-04 5.85e-09 5.77e-05 9.21e-02

129 4,160 4.27e-10 1.57e-07 9.33e-04 2.66e-09 1.05e-04 1.03e-01

215 11,556 3.10e-08 4.06e-07 8.27e-04 6.73e-09 1.87e-04 9.20e-02

359 32,220 6.70e-08 6.72e-07 8.39e-04 1.16e-06 2.60e-04 9.25e-02

599 89,700 2.47e-08 5.36e-06 8.91e-04 4.22e-07 4.85e-04 9.82e-02

1,000 250,000 3.73e-08 7.05e-06 9.20e-04 7.65e-07 5.48e-04 1.02e-01

Table 2: Relative objective difference between the relaxation and the objective value with the
rounded solution.

Results. We solve the fixed fee problem for logarithmically spaced range n ranging from
10 to 1,000 (m = 25 to 250,000), for µ = 0 (linear objective), 10−4, and 10−2, and for
both a ‘low fee’ setting with q0 = 0.01 while for the high fee setting, we have q0 = 1.0.
We record the number of non-integral λi in the solution to the relaxation in table 1 and
the relative objective difference between the relaxation and the objective value with the
rounded solution, using (19), in table 2. We see that when the objective function is linear,
the number of non-integral λi is negligible, and the objective value is very close to the
optimal value as we would expect. As the objective function becomes more concave, the
number of non-integral λi increases, but remains small relative to m. Additionally, we see
that the objective value of the rounded solution is still very close to that of the relaxation,
suggesting that we can approximately solve this NP-hard problem in practice. We leave
further numerical investigation to future work.

6 Conclusion

In this work, we have shown a number of theoretical properties of the convex flow problem,
all of which follow more or less directly from standard results in convex geometry. We first
showed that the traditional assumption of nondecreasing objective terms can be replaced by
a downward closedness condition on the sets of allowable flows. Using this condition, we
showed that there is a natural calculus of flows. We then introduced the flow cone to derive
a conic formulation of the convex flow problem, which we showed is equivalent to the original
and has a number of interesting properties. We next examined the case of fixed costs for
the use of an edge. Via a Shapley–Folkman argument, we showed that the relaxation of the
fixed fee problem always has an ‘almost’ integral solution. Finally, we showed that this fixed
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fee problem can be solved using the same algorithm for the convex flow problem, and solving
the convex relaxation often results in an integral solution that is close to optimal in practice.

Future work. This work prompts a number of questions, any of which suggest an inter-
esting avenue for future research. First, why do we often find integral solutions to the fixed
fee problem? Is there a natural condition that guarantees this? Second, what algorithm is
best for solving the fixed fee problem? Should we use the same algorithm as for the convex
flow problem, with the modification suggested in §5.5? Finally, this problem has a very
natural decomposition over the edges (equivalently, over the nodes, since we are working
with a bipartite graph). Can we exploit this decomposition to devise efficient distributed,
tatonnement-style algorithms? If so, what convergence rates should we expect? These po-
tentially asynchronous algorithms may be of interest in decentralized applications, such as
power grids or wireless networks as discussed in [DAE24, §3].
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A Downward closure of the flow cone

In this section, we show that the flow cone Ki from (5) is downward closed.

Scaling property. An important property of a set of allowable flows is that, for any flow
set Ti, if x ∈ Ti, then αx ∈ Ti for any 0 ≤ α ≤ 1. The proof is nearly immediate by the
convexity of Ti and the fact that 0 ∈ Ti by noting that

αx = αx+ (1− α)0 ∈ Ti. (21)

Downward closure. We will now prove that the flow cone Ki is downward closed. In
other words, we will show that, for any (x, λ) ∈ Ki and (x′, λ′) with x′ ≤ x and λ′ ≤ λ,
then (x′, λ′) ∈ Ki. We will first show that (x, λ) ∈ Ki implies that (x, λ′) ∈ Ki. To see this,
note that, if (x, λ) ∈ Ki, then there exists a sequence {(xk, λk)} such that xk/(−λk) ∈ Ti

and λk < 0 for each k, while the sequences converge in that xk → x and λk → λ by the
definition (5). If λ = λ′ then obviously (x, λ′) ∈ Ki, so assume that λ′ < λ. In this case,
there exists some k′ such that, λk ≥ λ′ for all k ≥ k′. But, since

xk

−λk

∈ Ti,
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for all k ≥ k′ by definition, then, since 0 ≤ λk/λ
′ ≤ 1 we have that, using the scaling

property (21):
λk

λ′
xk

−λk

∈ Ti,

so xk/(−λ′) ∈ Ti for each k ≥ k′. Since xk → x and Ti is closed, then x/(−λ′) ∈ Ti, so, by
definition (x, λ′) ∈ Ki, as required. The final question, if x′ ≤ x then (x′, λ′) ∈ Ki is easy:
if λ′ < 0 then x/(−λ′) ∈ Ti implies that x′/(−λ′) ∈ Ti by the downward closure of Ti, so
(x′, λ′) ∈ Ki. If λ′ = 0 then we know that λ = 0. Set δ = x′ − x and note that δ ≤ 0 since
x′ ≤ x. This means that, for the sequence λk < 0 with λk → 0, we have

xk + δ

−λk

∈ Ti,

since xk/(−λk) ∈ Ti and (xk + δ)/(−λk) ≤ xk/(−λk) because δ ≤ 0 and Ti is downward
closed. But, since xk → x, then xk + δ → x+ δ = x′. By the definition of (5), then we have
that (x+ δ, 0) ∈ Ki, so (x′, λ′) = (x+ δ, 0) ∈ Ki as required.

B Downward closure equivalence using the dual

Here, we provide a brief, intuitive proof of the equivalence between downward closure and
monotonicity using the dual problem.

Monotonicity implies downward closure. Assume that the objective functions U and
{Vi} are nondecreasing. Then the dual variables ν and {ηi} must all be nonnegative for the
dual to be finite-valued. Consider the arbitrage problem for some i:

fi(ηi) = sup
xi∈Ti

ηTi xi.

The solution to the arbitrage problem can be broken into two cases. First, if the set Ti

contains a positive ray, then the optimal value is unbounded, and the primal problem is
therefore infeasible. Second, if the optimal value is finite, then the solution will lie on the
boundary of Ti, as Ti is closed and convex. As a result, we can replace Ti with its ‘downward
extension’,

T̃i = Ti −Rn
+,

without affecting the solution.

Downward closure implies monotonicity. Assume that the sets {Ti} are downward
closed. We use x⋆

i to denote a solution to the arbitrage problem:

x⋆
i = argmax

x∈Ti

ηTi x,

for a fixed price vector ηi when this solution is finite. Consider two possible cases for fi.
First, if fi is unbounded, then the primal problem is again infeasible. Second, if fi is is finite,
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then the set Ti is contained in the halfspace {x | ηTi x ≤ fi(ηi)}, and x⋆
i is on the boundary of

Ti. Since Ti is downward closed, we must have ηi ≥ 0 in this case. As a result, we can replace
the objective function with its monotonic concave envelope without affecting the solution.

C Other properties

C.1 Circulation problem

If the net flow utility simply constrains the net flow to be zero, i.e.,

U(y) = −I{0}(y).

then we recover a generalized circulation problem. The dual problem becomes

minimize
m∑
i=1

(
V̄i(ηi − AT

i ν) + fi(ηi)
)
.

Taking the infimum of the objective over η and introducing a new variables zi ∈ Rni for
i = 1, . . . ,m, we can rewrite this problem as

minimize
m∑
i=1

Ṽi(zi)

subject to zi = AT
i ν, i = 1, . . . ,m

ν ≥ 0,

where we define
Ṽi(zi) = inf

ηi

{
V̄i(ηi − zi) + fi(ηi)

}
.

(This is very close to, but not quite, the infimal convolution of V̄i and fi.) Note that Ṽi is a
convex function, as convexity is preserved under partial minimization [BV04, §3.2.5]. This
problem has a nice interpretation: we are finding the pin voltages on the m components in
a passive electrical circuit [Boy+07, §6]. The optimality conditions simplify to

∇Ṽi(zi) = xi, i = 1, . . . ,m,

AT
i ν = zi, i = 1, . . . ,m,

m∑
i=1

Aixi ≥ 0, ν ≥ 0.

Viewing zi and xi as the voltage and current, respectively, at the terminals of component i,
and viewing ν as the voltages at every node in the circuit, then the first equation can can be
interpreted as the voltage-current characteristic for component i, the second as the Kirchoff
voltage law, and the last as Kirchoff’s current law, respectively.
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C.2 Cycle condition

When all edges are between two nodes, the optimality conditions have a nice interpretation
in terms of cycle conditions, similar to the augmenting path condition for max flow, given
by Ford and Fulkerson.

We define the vectors δ1, . . . , δm to be an arbitrage with respect to the flows {xi} if the
following conditions hold:

1. The vector δi ∈ T ⋆
i (xi) for all i = 1, . . . ,m, where

T ⋆
i (xi) = {δ | xi + tδi ∈ Ti for some t > 0}.

2. For some subgradient ν̂ ∈ U (
∑m

i=1 xi), we have that

ν̂T

(
m∑
i=1

Aiδi

)
≤ 0.

For the standard max flow problem, this should give the classic augmenting path condition.
For more general problems, we can first decompose into a cycle basis to easily check this
condition.
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