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Preface

This thesis covers a number of results in heuristics for approximately solving photonic design prob-

lems and bounds for the optimal value of such problems. Chapter 2 begins the thesis with an overview

of the literature and a very general introduction to the photonic design problem, along with simpli-

fied summaries of the usual techniques used in both approximately solving physical design problems

and in computing bounds for the optimal value of these optimization problems. Chapter 3 shows

a heuristic which can be used to find approximate solutions to the photonic design problem and

discusses some interesting observations based on the ideas introduced. In chapter 4, we cover a

particular technique for bounding the optimal value of photonic design problems, along with several

generalizations. Finally, chapter 5 shows a generalization of a number of bounds available in the

literature to include objectives that often show up in efficiency metrics.
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Chapter 1

Introduction and overview

We describe the thesis’s chapters here in more detail.

Overview of photonic design. In the photonic design problem, a scientist or engineer chooses

the physical parameters of a device to best match some desired device behavior. Many instances of

the photonic design problem can be naturally stated as a mathematical optimization problem that

is computationally difficult to solve globally. Because of this, several heuristic methods have been

developed to approximately solve such problems. These methods often produce very good designs,

and, in many practical applications, easily outperform ‘traditional’ designs that rely on human

intuition. Yet, because these heuristic methods do not guarantee that the approximate solution

found is globally optimal, the question remains of just how much better a designer might hope to

do. This question is addressed by performance bounds or impossibility results, which determine a

performance level that no design can achieve. We focus on algorithmic performance bounds, which

involve substantial computation to determine. We illustrate a variety of both heuristic methods

and performance bounds on two examples. In these examples (and many others not reported here)

the performance bounds show that the heuristic designs are nearly optimal, and can be considered

globally optimal in practice. This chapter serves to clearly set up the photonic design problem and

unify existing approaches for calculating performance bounds, while also providing some natural

generalizations and properties. This chapter is adapted from [1].

A new heuristic. In a physical design problem, the designer chooses values of some physical

parameters, within limits, to optimize the resulting field. This chapter focuses on the specific case in

which each physical design parameter is the ratio of two field variables. This form occurs for photonic

design with real scalar fields, diffusion-type systems, and others. We show that such problems can be

reduced to a convex optimization problem, and therefore efficiently solved globally, given the sign of

an optimal field at every point. This observation suggests a heuristic, in which the signs of the field

1



CHAPTER 1. INTRODUCTION AND OVERVIEW 2

are iteratively updated. This heuristic appears to have good practical performance on diffusion-type

problems (including thermal design and resistive circuit design) and some control problems, while

exhibiting moderate performance on photonic design problems. We also show in many practical

cases there exist globally optimal designs whose design parameters are maximized or minimized at

each point in the domain, i.e., that there is a discrete globally optimal structure. This chapter is

adapted from [2].

Computational bounds. Physical design problems, such as photonic inverse design, are typically

solved using local optimization methods. These methods often produce what appear to be good or

very good designs when compared to classical design methods, but it is not known how far from

optimal such designs really are. We address this issue by developing methods for computing a bound

on the true optimal value of a physical design problem; physical designs with objective smaller than

our bound are impossible to achieve. Our bound is based on Lagrange duality and exploits the

special mathematical structure of these physical design problems. For a multi-mode 2D Helmholtz

resonator, numerical examples show that the bounds we compute are often close to the objective

values obtained using local optimization methods, which reveals that the designs are not only good,

but in fact nearly optimal. The computational bounding method presented here also produces, as

a by-product, a reasonable starting point for local optimization methods. This chapter is adapted

from [3].

Computational bounds for efficiency metrics. In this final chapter, we present a method for

computing bounds for a variety of efficiency metrics in photonics. We focus on the special case

where the objective function can be written as the ratio of two quadratic functions of the field and

show that there exists a simple semidefinite programming relaxation for this problem. We provide

a numerical example of bounding the maximal mode conversion purity for a device of given size.

This chapter also introduces an open source implementation of the computational bounding methods

which is easy to use. This chapter is adapted from an in-progress manuscript.



Chapter 2

An overview of photonic design

The material from this chapter is adapted from [1].

Introduction

An important part of photonics, and many other scientific and engineering fields, is the design and

construction of physical devices. A ‘physical device’, as used in this thesis, includes anything as

simple as a spherical lens, where a scientist can easily find an optimal lens for a given application by

using basic algebra and ray optics, all the way to potentially very complicated devices and applica-

tions such as range detection and mapping using LiDAR [4], where building an ‘optimal’ device, in

nearly any practically useful sense, is an open research problem. Though the two examples we give

are in the field of photonics (and this is, indeed, the focus of our chapter), the term refers to any

device that can, at least theoretically, be built, and whose desired behavior can be mathematically

specified.

Traditionally, the design of physical devices was done by an engineer or scientist, whom we

will generally call a designer, for a specific application. The designer would have a library, either

physically or through experience, of well-understood components or materials, each performing a

specific function. These components would then be carefully pieced together, often with a good

amount of ingenuity, in order to perform the desired task. In many cases, the resulting designs could

then be modified in part or in whole, or combined with other designs, in order to perform even more

complicated functions. This procedure, while effective in practice, is time consuming and sometimes

even tangential to the final application of the design itself.

A second approach to constructing physical devices was initially explored in the early 1960s within

the field of electrical engineering, originally for the purpose of recognizing printed letters [5] and has

since been extended to many other fields [6–27], with sometimes very surprising results [28]. In this

approach, the designer specifies a mathematical objective function which, given a design, outputs

3
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a number representing how well the input design matches the desired specifications; the lower this

number is, the better the design. This function is then fed into an optimization algorithm, which

attempts to minimize this objective function by finding a design that is good in the sense specified

by the designer. In almost all practical cases, the algorithm will fail to find the best possible design,

and, except in very specific scenarios, may never do so even when left to run for a very long time.

But, in many applications, the resulting designs found often have much better performance than any

design found by humans. This approach can be seen as a declarative approach to design: the user

specifies what they want, while ceding control of how it should be done to the optimization algorithm.

This idea has many names in different fields, with field-specific connotations and denotations; these

include ‘automated design’, ‘computational design’, ‘inverse design’ (in photonics and aerospace

engineering), ‘shape design’ and ‘generative design’ (in mechanical engineering), ‘topology design’

(in several fields), or ‘synthesis’ (in hardware design), among many others. We will simply call this

optimization problem the ‘physical design problem’, with the understanding that many, if not all,

of the previously mentioned problems are instances of the physical design problem.

2.1 The physical design problem

The usual physical design problem can be formally stated in many ways. In this thesis, we focus

on a simple but general formulation, which, as we show in this section, includes many important

problems in photonic design.

2.1.1 Physics

The design problem starts with a physical theory that describes the behavior of the field (which we

will write as z) under some excitation (which we will write as b). The field z and excitation b are

vectors in some (typically infinite dimensional) vector space. We focus here on the case when the

physical theory is linear, in which case we can write the physics equation as

Az = b, (2.1)

where A is a linear operator. Problems in physical design are governed by physics equations such

as Maxwell’s equations, Helmholtz’s equation, the heat equation, the Schrödinger equation, among

many others, which are linear in many important applications, and therefore of the form of (2.1).

Electromagnetic wave equation. For example, a common way of writing the electromagnetic

(EM) wave equation in terms of the electric field E and the currents J , for a monochromatic wave

with angular frequency ω is [29, §2],

−∇×∇× E + ω2µ0εE = −iωµ0J,
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where ε denotes the permittivities at each point in space and µ0 is the magnetic permeability, which

we assume to be constant throughout space, in this example. We can then make the following

correspondences:

(−∇×∇× ·+ ω2µ0ε)! "# $
A

E!"#$
z

= −iωµ0J! "# $
b

, (2.2)

which naturally leads to an equation of the form of (2.1).

Discretization. We will work with an appropriate discretization of the field, excitation, and

physics equation (2.1). We will overload notation to use the same symbols for their discretized

versions. In the sequel, the field z will be a vector in Rn, the excitation b will be a vector in Rm,

and the linear operator A will be a matrix in Rm×n. The physics equation (2.1) is then a set of

m linear equations in n scalar variables. Complex fields and excitations can be reduced to the real

case by separating them into their real and imaginary parts.

Solutions and simulations. For a fixed A and excitation b, we will call any z which satisfies (2.1)

a solution of the physics equation. In general there can be a unique solution, many solutions, or no

solution. We will focus on the case when there is a unique solution, i.e., m = n and A is invertible,

so z = A−1b.

We refer to computing the field z = A−1b, given A and b, as a simulation. There are many

simulation methods, including generic methods for solving linear equations such as sparse-direct

methods [30, 31] or iterative methods [32, 33], and custom methods crafted specifically for the par-

ticular physics equations [34–36]. We note that, in practical photonic design, the resulting linear

systems can be very large, with the number of variables, n, often in the millions or tens of millions.

Solving systems in the upper end of this range often requires the use of large-scale linear solvers [37].

Approximate solutions and physics residual. Some of the methods we will see work with

approximate solutions of the physics equation. For any field vector z and excitation b, we define

the physics residual as rphys = Az − b. A reasonable numerical measure of the size of the residual

is %Ax − b%/%b%, where % · % is a norm, typically the Euclidean norm % · %2. Simulations, especially

those that use iterative methods, produce fields with small physics residuals.

Modes. A simple trick can be used to represent the modes of a system as a solution to (2.1).

Suppose the original (discretized) physics equation is Hz = λz, where λ is the eigenvalue and z

is an associated mode. Directly expressing this as Az = b with A = H − λI and b = 0 yield a

physics equation that is not invertible and has multiple solutions (including, of course, z = 0). To

fix a unique solution, we use a linear normalization and insist that cT z = 1, where c ∈ Rn is some
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nonzero vector. We then represent the mode equation and normalization as Az = b with

A =

%
H − λI

cT

&
, b =

%
0n

1

&
. (2.3)

This has a unique solution, provided c is not an eigenvector of H with eigenvalue λ and that λ

is a simple eigenvalue. Note that the linear normalization in (2.3) differs from the usual choice of

normalization, %z%2 = 1, where % · %2 is the Euclidean norm.

2.1.2 Design parameters

In physical design, the designer is able to change the system physics equation (2.1), by choosing some

parameters that affect the physics, i.e., A and b. Thus A and b depend on some design parameters

θ ∈ Rd. For example, in photonic design, θ is generally a variable that controls the permittivities

inside of the device. We can then write the physics equation (2.1) with explicit dependence on the

design parameters as

A(θ)z = b(θ). (2.4)

When A(θ) is invertible we have z(θ) = A(θ)−1b(θ); i.e., the field also depends (implicitly) on the

design parameters θ.

Affine physics design. In many practical cases (and in all of the examples we will show), A and

b are affine functions of the design parameters; i.e.,

A(θ) = A0 +

d'

i=1

θiAi, b(θ) = b0 +

d'

i=1

θibi,

where Ai ∈ Rm×n and bi ∈ Rm. These Ai are usually sparse matrices and vectors; that is, each

design parameter θi affects just a few entries of A and b. Because equation (2.4) is affine in θ when

holding z fixed, and affine in z when holding θ fixed, this type of equation is sometimes called

‘bi-affine’ or ‘multilinear’ in θ and z.

Diagonal physics design. A common and useful special case of (2.4) is when b(θ) is a constant,

b(θ) = b0, and A(θ) can be written as

A(θ) = A0 + diag(θ), (2.5)

where diag(θ) is a matrix whose diagonal entries contain the elements of the vector θ and is zero

elsewhere. In other words, Ai = Eii, where Eii is the matrix with only one nonzero entry (which is

one), in the i, i entry. We will call this special case of (2.4) the diagonal physics equation.
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EM wave equation in diagonal form. A specific example of a diagonal physics equation are

Maxwell’s equations (4.17), whenever a designer is allowed to vary the permittivities. In this case,

we can define θ to be proportional to the permittivities (with proportionality constant µ0ω
2) such

that the following correspondences can be made:

(−∇×∇× ·! "# $
A0

+ µ0ω
2ε! "# $

diag(θ)

) E!"#$
z

= −iωµ0J! "# $
b

.

This correspondence results in an equation of the form of (2.5). (We can also similarly write the

more general case where the designer is allowed to vary both the permittivities and permeabilities,

in this form. See, e.g., the appendix in [3].)

Low-rank updates. Whenever A(θ) is sparse (which is very common in practice), it is often

possible to compute an explicit factorization of A(θ) (e.g., the sparse Cholesky factorization, when

A(θ) is positive semidefinite) which makes evaluating A(θ)−1b(θ) inexpensive, after the factorization.

Additionally, whenever the matrices Ai are also low rank (as in the diagonal case (2.5), for example),

updates to the factorization of A(θ) can be efficiently computed [31]. This implies that we can also

efficiently evaluate A(θ′)−1b(θ′), when only a small number of entries of θ′ differ from those of θ,

given the factorization for A(θ).

Parameter constraints. In general, a designer has constraints on the parameters that can be

chosen. Because of this, we will define the feasible parameter set, Θ ⊆ Rd, such that only design

parameters satisfying θ ∈ Θ are feasible or valid. In many applications, Θ is a hyperrectangle (or

box) indicating that each component of θ must lie in some interval given by θmin, θmax ∈ Rd, i.e.,

Θ = {θ ∈ Rd | θmin ≤ θ ≤ θmax},

where the inequalities are elementwise.

In photonic design, it is often not possible to vary the permittivities along an interval but are

instead allowed to be one of two possible values. This leads to another common set of parameter

constraints, where each component of θ is constrained to be exactly one of two elements (we will

call this class of constraints Boolean constraints):

Θ = {θ ∈ Rd | θi ∈ {θmin
i

, θmax
i

} for i = 1, . . . , d}.

In this class of constraints, the total number of parameters that are feasible is |Θ| = 2d. The feasible

parameter set Θ can also include fabrication constraints such as minimum possible feature sizes,

among other possibilities [38], but we will focus on the common cases of box or Boolean constraints.
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Normalization. We can re-parametrize the design parameters to lie between −1 and 1 (or any

other limits). So, without loss of generality, we can always consider the upper and lower bounds to

be θmin = −1 and θmax = 1, where 1 is the vector with all entries equal to one. To do this, we

introduce a new parameter δ ∈ Rd and define

θ = θ̄ + ρ ◦ δ,

where θ̄ = (θmax + θmin)/2 is the parameter midpoint, while ρ = (θmax − θmin)/2 is the parameter

radius, and ◦ denotes the elementwise (Hadamard) product. The constraint θ ∈ Θ becomes −1 ≤
δ ≤ 1, where the inequalities are elementwise, in the box-constrained case, or δ ∈ {−1, 1}d in the

Boolean case. We then have A(θ) = Ã(δ), b(θ) = b̃(δ), with Ã and b̃ affine, and

Ã0 = A(θ̄), b̃0 = b(θ̄),

while

Ãi = ρiAi, b̃i = ρibi, i = 1, . . . , d.

2.1.3 Optimization problem

The design objective is often written as a function of the fields, specifying how well the resulting field

matches the desired objective. This objective function could specify the power in a given direction,

the field overlap (i.e., the inner product between the current field and a desired one), or the total

energy, all of which can be written as functions depending only on the field, that the designer may

wish to optimize. For example, the designer may wish to maximize the power transmitted through

a specific port of a device at a given frequency [39], or to maximize the focusing efficiency of a lens

within a specific region [40, 41]. Finding a device that best matches this objective can be directly

phrased as a mathematical optimization problem.

Objective function. In other words, we seek to find a design whose field optimizes an objective

function f : Rn → R ∪ {+∞}. The function’s input is a field z (generated by some design θ ∈ Θ)

and its output is a number that specifies how good or bad this field is, or how well the field matches

the designer’s specification. Without loss of generality, we will assume that a higher number is

worse (i.e., a designer wishes to minimize f), but we can just as well maximize f by, equivalently,

minimizing its negative, −f . We allow the objective function f to take on infinite values to denote

hard constraints on the desired field: if f(z) = +∞ for some field z, then z is not a feasible field.
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Problem statement. We can then compactly write the problem that a designer wishes to solve

(or approximately solve), which we will call the physical design problem:

minimize f(z)

subject to A(θ)z = b(θ)

θ ∈ Θ,

(2.6)

where the problem variables are the fields z ∈ Rn and design parameters θ ∈ Rd, while the problem

data include the matrix A(θ) ∈ Rm×n, the excitation b(θ) ∈ Rm, and the parameter constraint set

Θ ⊆ Rd. We will call the special case of (5.6) where the physics equation is the diagonal physics

equation (2.5) the diagonal physical design problem. (As a reminder, in photonic design, θ is usually

proportional to the permittivities, while A(θ) is the operator corresponding to the electromagnetic

wave equation (4.17).)

Problem attributes. Problem (5.6) has several important properties. In many practical cases,

the function f is a convex function and the set Θ is a convex set, which implies that problem (5.6) is a

convex problem in the variable z, when holding θ fixed, and is a convex problem in θ, when holding

z fixed. This property leads to some useful heuristics for approximately solving problem (5.6);

cf., [42, 43]. Additionally, problem (5.6) often has a smooth (differentiable) objective function f ,

while Θ can almost always be represented as a number of smooth equality and inequality constraints,

which happens in many practical applications and all examples presented in this chapter. In this case,

we can apply general nonlinear optimization solvers such as IPOPT [44] directly to problem (5.6).

Computational hardness. On the other hand, it is not difficult to show that even finding a

feasible design and field for problem (5.6) is, in general, a computationally difficult problem (i.e., it

is NP-hard) even when the design parameters θ are unconstrained; that is, even if Θ = Rn. To do

this, we will reduce the subset sum problem [45], a problem known to be NP-hard, to an instance

of (2.4). This would imply that, if we could efficiently solve problem (2.4), then we could efficiently

solve the subset sum problem, which is widely believed to be computationally hard to solve. (See,

e.g., [46] for a good overview of P vs. NP and its implications.)

The subset sum problem asks: given c ∈ Rn, is there a nonzero binary vector x ∈ {0, 1}n such

that cTx = 0? We will show that, given c, we can answer this question by finding a field z and

a design θ that satisfy the constraints of (5.6), which will imply that, in general, problem (5.6) is

computationally difficult.

First, note that we can write the following conditions on z and θ,

cT z = 0, θn+11
T z = 1, θi(zi − 1) = 0, zi = θi, i = 1, . . . , n,
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as an instance of (2.4), by appropriately stacking the conditions into a matrix form. Now, the last

two conditions are true if, and only if, zi(zi − 1) = 0, which also happens only when zi ∈ {0, 1}
for i = 1, . . . , n. The second condition implies that 1T z ∕= 0, and, when combined with the first

condition, this statement is true if, and only if, there exists a nonzero solution to the subset sum

problem, with the provided vector c. This, in turn, shows that finding a feasible design θ and field

z such that the constraints of (5.6) are satisfied must, in general, be a problem that is at least as

hard as the subset sum problem.

Because problem (5.6) is likely to be computationally difficult to solve exactly when the number

of parameters is large, we will focus on heuristics which approximately solve the problem for the

remainder of this chapter.

Multi-scenario design. A common design task is to find a single device that has good perfor-

mance across many different scenarios. For example, the device might need to be robust against

temperature variations, or the device might be required to filter out a number of specific wavelengths,

while allowing others through. In this case, we will assume that the device satisfies S instances of

the physics equation (2.1), where the design parameters θ are held fixed across the S instances, but

the physics equation or the excitation, is allowed to vary:

As(θ)zs = bs(θ), s = 1, . . . , S.

Here As(θ) ∈ Rms×ns , bs(θ) ∈ Rms and zs ∈ Rns for s = 1, . . . , S. This leads to the multi-scenario

physical design problem:

minimize f(z1, . . . , zS)

subject to As(θ)zs = bs(θ), s = 1, . . . , S

θ ∈ Θ,

(2.7)

where the variables are the fields zs ∈ Rns in each of the s = 1, . . . , S scenarios and the design

parameters θ ∈ Rd, while the objective function f : Rn1 × · · ·×RnS → R can depend on the fields

at any of the S scenarios.

In fact, it turns out that we can write any instance of the multi-scenario physical design prob-

lem (2.7) as an instance of (5.6). To do this, we collect all of the individual physical equations into a

single constraint by placing all of the As(θ) along the diagonal of a lager matrix A(θ), and stacking
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the excitations bs(θ) and fields zs. More specifically, define

A(θ) =

(

)))))*

A1(θ) 0 . . . 0

0 A2(θ) . . . 0
...

...
. . .

...

0 0 . . . AS(θ)

+

,,,,,-
, b(θ) =

(

)))))*

b1(θ)

b2(θ)
...

bS(θ)

+

,,,,,-
, z =

(

)))))*

z1

z2

...

zS

+

,,,,,-
.

So we can write the S distinct physical equations, As(θ)zs = bs(θ) for scenarios s = 1, . . . , S,

as the single equation, A(θ)z = b(θ), with dimensions A(θ) ∈ Rm×n, z ∈ Rn, and b(θ) ∈ Rm,

where m = m1 + · · · + mS and n = n1 + · · · + nS . Overloading notation slightly, such that

f(z) = f(z1, . . . , zS), then reduces problem (2.7) to one of the form of (5.6). In other words, it

suffices to only consider a problem of the form of (5.6).

Eliminating the field variables. A simple (and relatively common) equivalent formulation of

problem (5.6) is to note that, because we have assumed A(θ) is invertible, we can write it as a problem

that depends only on the design variables; i.e., since z = A(θ)−1b(θ), we can write problem (5.6) as

the following optimization problem over θ ∈ Rd:

minimize f(A(θ)−1b(θ))

subject to θ ∈ Θ.
(2.8)

When the function f is differentiable, we can easily compute its derivatives with respect to each

component of θ:
∂

∂θi
f(A(θ)−1b(θ)) = (∇f(z))TA(θ)−1Aiz,

where z = A(θ)−1b(θ) is the solution to (2.4) for design parameters θ. We can write this in a slightly

more compact form by defining y = A(θ)−T (∇f(z)), such that

∂

∂θi
f(A(θ)−1b(θ)) = yTAiz. (2.9)

Note that, to find z and y, we only need to solve two systems of linear equations, one over A(θ), and

one over A(θ)T . This observation can be used to efficiently compute the gradient of the objective

with respect to the design variables and is called the adjoint method, dating back to the control theory

literature of the 1970s [47, 48]. Other methods of computing the derivative when, for example, the

matrix A(θ) is not invertible include automatic differentiation through the simulation (as in [49–51]),

among many others.

Eliminating the design variables. In the case of diagonal design, and for some choices of the

parameter constraint set Θ, it is also possible to eliminate the corresponding design variables [2].
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For example, in the case where the parameter constraint set Θ is a box, −1 ≤ θi ≤ 1, then, given a

field z, there exist design parameters θ satisfying

(A0 + diag(θ))z = b0,

(i.e., z satisfies the diagonal physics equation (2.5) with parameters θ) if, and only if the field z

satisfies

|A0z − b0| ≤ |z|,

where the absolute value | · | is taken elementwise.

To see this, note that, from (2.5), we can write

A0z − b0 = −diag(θ)z,

and, since we are free to choose any −1 ≤ θ ≤ 1, we have that such a θ exists, if, and only if,

|A0z − b0| ≤ |z|.

This lets us write the diagonal physical design problem in the following equivalent way:

minimize f(z)

subject to |A0z − b0| ≤ |z|,
(2.10)

where the only problem variable is the field z ∈ Rn. We will call this formulation of the diagonal

physical design problem, as in [2], the absolute-upper-bound formulation.

This rewriting also shows an interesting property of the physical design problem, whenever f is

convex: if you know the signs of any optimal field, then the design problem becomes convex and

therefore easy to solve globally. That is, if we know s = sign(z"), where sign is the signum function

sign(z")i =

.
/

0
1 z"

i
≥ 0

−1 z"
i
< 0,

and where z" is optimal for (2.10), then any solution to the convex optimization problem

minimize f(z)

subject to |A0z − b0| ≤ diag(s)z,
(2.11)

with variable z ∈ Rn is a solution to (2.10) with the same optimal value as z". This follows from

two basic facts. First, any z that is feasible for (2.11) is feasible for (2.10) with the same objective
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value because

|A0z − b0| ≤ diag(s)z ≤ |z|.

And, second, that z" is feasible for (2.11) since

diag(s)z" = |z"|,

and, by definition, z" is feasible for (2.10) and so satisfies |A0z
" − b0| ≤ |z"|. This observation

also leads to an optimization algorithm which iteratively updates the signs and yields a sequence of

feasible fields with decreasing objective value [2, §3], called sign-flip descent or SFD for short. We

compare its performance against other basic solvers in §3.5.
A similar analysis holds when Θ = {−1, 1}n, i.e., θ is constrained to be Boolean. In this case, we

have that, given some field z, there exists a Boolean design θ ∈ {−1, 1}n such that θ and z satisfy

the diagonal physics equation if, and only if, z satisfies

|A0z − b0| = |z|. (2.12)

We note that, in photonics, the box-constrained formulation sometimes leads to designs that cannot

be practically implemented because the resulting designs may have permittivities that lie along an

interval (i.e., θi may lie anywhere in [−1, 1]), while most fabrication methods only allow the use

of two possible permittivities (i.e., we must have θi ∈ {−1, 1}). Despite this, the box-constrained

formulation is often used as a good initialization for current inverse design algorithms, which then

approximately solve the Boolean case [37].

Approximate solution methods. There are many practical methods for approximately solv-

ing (5.6). For example, many of the earliest solution methods approximately solve the physical

design problem by applying zeroth order (or ‘derivative free’) optimization algorithms after elimi-

nating the field variable, as shown in problem (2.8) [52–58]. Such methods are easy to implement

in practice, as they only require the ability to perform a basic simulation; i.e., to solve the physics

equation (2.4) for a given θ ∈ Θ. Zeroth order optimization methods include hill-climbing, genetic

algorithms [59], simulated annealing [60], Nelder-Mead [61], and adaptive coordinate descent [62],

among many others [63]. While effective at finding designs with moderate to good performance,

zeroth order optimization methods scale poorly and suffer from slow convergence when compared

to higher-order methods. (See [64] and [65] for more information on zeroth order optimization

methods.)

A second important family of optimization algorithms, which include the algorithms most used

in practice, are the first order optimization algorithms, which are also almost always applied to

problem (2.8). In these cases, such methods additionally make use of gradient information (2.9),

leading to better computational performance and faster convergence times, at the expense of higher
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implementation complexity, as these methods require additional information from the simulator.

Examples of first order optimization algorithms used in practive include L-BFGS-B [66], proximal

gradient methods [67], and the method of moving asymptotes [68], among many others. (See [69–71]

for a comprehensive overview.)

We compare a few different methods in §2.3.1 in terms of computational performance and result-

ing design performance.

2.2 Performance limits

Any approximate optimization method for the physical design problem (5.6) can be used to generate

approximately optimal designs. In other words, if we let p" be the optimal value for (5.6), these

procedures generate a design and field that satisfy the physics equation (2.1) whose objective value,

say p, satisfies p ≥ p". In general, because problem (5.6) is hard to solve, it is hard to know how

far away our designs are from the true optimal value p". For example, once we have approximately

optimized (5.6) and received some design with objective value p, it is not clear if this design is close

to optimal (and no design can do significantly better) or if there are designs that have much better

performance than the one we’ve found.

It is an old tradition in physics to then ask: what is the best possible value that we can hope

to achieve? More specifically: is there some lower bound d such that we can guarantee that the

optimal value of problem (5.6), p", is never smaller than this bound; i.e., p" ≥ d? Such a bound can

be interpreted in many ways. For example, it can be interpreted as an ‘impossibility result’, which

states that no device that satisfies the physics equation (2.4) and the parameter constraints, θ ∈ Θ

can have objective value smaller than d. We can also interpret is as a ‘certificate of optimality’:

given some design with objective value p, if p is close to d, then p must also be close to the optimal

objective value, p", since p ≥ p" ≥ d. Of course the best performance bound is p", but computing

this is intractable, and we seek bounds that can be computed at reasonable cost.

Additionally, performance bounds can be very important in speeding up the design process.

For example, it is often not clear how large a design needs to be in order to achieve reasonable

performance. This often results in designers having to experiment with the total device size in

order to find a design which has at least the desired performance. Lower bounds on these values,

if they are efficiently computable, would give an indication of how large a design needs to be in

order to achieve the designer’s goals without additional (potentially very computationally expensive)

experimentation.

Methods. Roughly speaking, there are two main approaches to the problem of finding lower

bounds to the optimal objective value of problem (5.6). The first, and likely the earliest of the

methods, is to make basic physical assumptions about the system (for example, that the system
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size is substantially smaller than the wavelength of the excitation [72,73]) and derive bounds on the

corresponding quantities [74–78]. While these methods are historically important and yield good

rule-of-thumb heuristics for design, many of the bounds derived in this way require assumptions

that are not satisfied by the devices found by inverse design, or result in weak bounds. The second

approach, which has become relatively popular recently (see, e.g., [?, 3, 40, 79–89]), essentially uses

basic properties of the constraints and objective function of problem (5.6) to derive bounds on

the best possible performance of the problem. Such approaches include algebraic manipulations

of the physics equation (2.1) combined with the parameter constraints θ ∈ Θ, and applications of

Lagrange duality to problem (5.6). The resulting bounds often do not have analytical forms, but can

be numerically evaluated by an efficient algorithm and are therefore called computational bounds.

We will discuss such bounds in this section.

2.2.1 Lagrange duality

The basic tool in a number of these bounds is the use of Lagrange duality. The idea is as follows.

Given the optimization problem

minimize f(x)

subject to h(x) ≤ 0,
(2.13)

for some objective function f : Rn → R, constraint function h : Rn → Rm, and optimization

variable x ∈ Rn, we form the Lagrangian:

L(x,λ) = f(x) + λTh(x),

where λ ∈ Rm, with λ ≥ 0 is a Lagrange multiplier or dual variable. This lets us define the Lagrange

dual function g : Rm → R, given by

g(λ) = inf
x

L(x,λ) = inf
x

1
f(x) + λTh(x)

2
.

See, e.g., [90, §5] for more information on Lagrange dual functions.

Lower bound property. The function g has a few interesting properties. First, for any λ ≥ 0,

g(λ) is always smaller than p", the optimal value of (2.13), and is therefore a performance bound.

More specifically, we have

g(λ) = inf
x

1
f(x) + λTh(x)

2
≤ inf

h(x)≤0

1
f(x) + λTh(x)

2
≤ inf

h(x)≤0
f(x) = p".

The first inequality follows from the fact that the set of x which satisfy h(x) ≤ 0 is no larger than

the set of all x ∈ Rn, and the second follows from the fact that, because h(x) ≤ 0 and λ ≥ 0, then
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λTh(x) ≤ 0. Thus the Lagrange dual function gives us a performance bound, parametrized by λ.

(Depending on the problem and choice of λ, it can give the trivial lower bound −∞.)

Concavity. Since g(λ) is a performance bound for any λ ≥ 0, it is then natural to ask, what is

the best possible performance bound? In other words, what is the largest possible value of g(λ) over

the possible values of λ? This problem is called the dual problem and can be written as

maximize g(λ)

subject to λ ≥ 0.
(2.14)

In general, evaluating g(λ) at some λ ≥ 0 is at least as hard as solving the original problem (2.13).

On the other hand, when it is possible to efficiently evaluate g(λ), it is almost always possible to

efficiently find the optimal value of the dual problem (2.14) because the function g is always a

concave function, even when the objective function f and constraints h in the original problem are

not convex [90, §5.1.2].

Initializations. A solution to the dual problem (2.14) often suggests a good initialization for

heuristics which attempt to minimize problem (2.13). Given some dual variable λ" that is optimal

for (2.14), there exists some x0 which minimizes the Lagrangian at this choice of dual variable

x0 ∈ argmin
x

L(x,λ"),

under some basic assumptions on the objective function f and constraints h. In practice, x0 is

generally close to a reasonable design (see, e.g., [3]) even if it is not feasible; i.e., it need not satisfy

h(x0) ≤ 0, except in some special scenarios such as when the functions f and h are both convex,

in which case x0 is globally optimal [90, §5.2]. Because it is often true that x0 is easy to evaluate

whenever g(λ") is easy to evaluate, this initialization can be seen as a by-product of finding a solution

to (2.14).

2.2.2 Local power conservation

The first approach to constructing bounds for (5.6) was presented originally in some generality in [79]

and then [87] and later extended and fully clarified in [84,89,91] and subsequently fully generalized

in [85] and [88] in the case where the parameters are Boolean (i.e., Θ = {−1, 1}n). We will present

a further generalization to the case where the parameters are box-constrained (Θ = [−1, 1]n), by a

slightly different proof that considers a relaxation of the absolute-upper-bound formulation (2.10).

(The Boolean case follows from an identical argument by considering (2.12), instead.) Bounds of

this form are essentially power conservation laws over a given subdomain, which, in photonics, are

often included under the name ‘optical theorem’ [92].
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Power inequalities. Starting with the absolute-upper-bound formulation given in (2.10), we can

square both sides of the inequality constraint to receive an equivalent formulation,

minimize f(z)

subject to (aT
i
z − (b0)i)

2 ≤ z2
i
, i = 1, . . . , n.

(2.15)

In other words, a field z is feasible (i.e., there exists a design θ ∈ Θ such that z and θ satisfy the

diagonal physics equation (2.5)) if, and only if the following quadratic inequalities are all satisfied:

(aT
i
z − (b0)i)

2 ≤ z2
i
, i = 1, . . . , n. (2.16)

We can, of course, multiply these inequalities by a nonnegative value λi ≥ 0 for i = 1, . . . , n and

add any number of them together to get another valid, quadratic inequality,

n'

i=1

λi(a
T

i
z − (b0)i)

2 ≤
n'

i=1

λiz
2
i
,

where aT
i
is the ith row of A0. This can be more compactly expressed as

(A0z − b0)
TD(A0z − b0) ≤ zTDz, (2.17)

where D = diag(λ) and has nonnegative entries along the diagonal.

The family of inequalities (2.17), parametrized by the nonnegative diagonal matrices D is the

same as the family given in [85,88], except in the case where Θ specifies a box constraint, instead of a

Boolean one. Additionally, because z satisfies (2.16) if, and only if, it satisfies (2.17) for all diagonal

matrices D with nonnegative diagonals, then it follows that the family of quadratic inequalities

in [85, 88] is tight, in the following sense: any field z which satisfies these power conservation laws

for all nonnegative diagonal matrices D must also have a corresponding design θ ∈ Θ such that z

and θ simultaneously satisfy the diagonal physics equation (2.5). (The inequalities in (2.17) are of a

slightly different form than those presented in [85,88]. We show their equivalence in appendix 2.6.1.)

Relaxed formulation. Because any feasible field z satisfies (2.17) for any nonnegative diagonal

matrix D, we can relax the family of inequalities (2.17) from all nonnegative diagonal matrices D

to a finite number of them, which we will write as Dj for j = 1, . . . , N . The following problem can

then be seen as a relaxation of (2.15):

minimize f(z)

subject to (A0z − b0)
TDj(A0z − b0) ≤ zTDjz, j = 1, . . . , N,

(2.18)
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with the field z ∈ Rn as the only variable and problem data A0 ∈ Rn×n, the excitation b0 ∈ Rn,

and the diagonal matrices Dj ∈ Rn×n with nonnegative entries along the diagonal, for j = 1, . . . , N .

Note that, if Dj = Ejj for j = 1, . . . , n, where Ejj is the matrix with a single nonzero in the j, j

entry (which is one) and is zero elsewhere, we recover the original problem (2.15). Additionally,

while this problem is a relaxation of the original, it is still likely to be computationally hard to solve.

Quadratic objective. In general, finding lower bounds to the relaxed formulation (2.18) also

need not be easy, except in some important special cases. For example, when the objective function

f is a quadratic,

f(z) =
1

2
zTPz + qT z + r,

for some symmetric matrix P ∈ Sn, vector q ∈ Rn, and r ∈ R, then problem (2.18) is a quadratically

constrained quadratic program (QCQP, see [93]), and the dual function g corresponding to this

problem has a closed form solution. In fact, the dual problem of (2.18) is, in general, a convex

semidefinite program (SDP) which can be solved in practice for moderate values of n and N [90, §1],
allowing us to find a lower bound to (2.18) and therefore to (5.6) efficiently.

Dual problem. To find the dual problem, we first formulate the Lagrangian of (2.18):

L(z,λ) =
1

2
zTPz + qT z + r +

1

2

N'

j=1

λj((A0z − b0)
TDj(A0z − b0)− zTDjz)

=
1

2
zTT (λ)z + v(λ)T z + u(λ),

where λ ∈ RN

+ and we have defined

T (λ) = P +

N'

j=1

λj(A
T

0 DjA0 −Dj), v(λ) = q −
N'

j=1

λj(A
T

0 Djb0), u(λ) =
1

2

N'

j=1

λjb
T

0 Djb0 + r,

such that T (λ) ∈ Sn and v(λ) ∈ Rn, for notational convenience. (This follows from expanding the

expression and collecting the quadratic, linear, and constant terms in the variable z.)

It is not hard to show that the dual function is, for λ ≥ 0,

g(λ) = inf
z

L(y,λ) =

.
/

0
u(λ)− 1

2v(λ)
TT (λ)+v(λ) T (λ) ≥ 0, v(λ) ∈ R(T (λ))

−∞ otherwise.

(See, e.g., [93, §3.2].) Here T (λ)+ is the Moore-Penrose pseudoinverse [94, §11.5] of T (λ), while
T (λ) ≥ 0 means that T (λ) is positive semidefinite, and R(T (λ)) is the range of T (λ). The corre-

sponding problem of maximizing g over λ ∈ RN

+ can be written as a standard form SDP, which we



CHAPTER 2. AN OVERVIEW OF PHOTONIC DESIGN 19

will call the power dual bound :

maximize u(λ)− (1/2)t

subject to

%
t v(λ)T

v(λ) T (λ)

&
≥ 0

λ ≥ 0,

(2.19)

with variables t ∈ R and λ ∈ RN . This problem can be easily specified using domain-specific

languages such as CVXPY or JuMP.jl and solved using convex solvers that support SDPs, such as

Mosek [95], SCS [96], or COSMO.jl [97]. Because of the sparsity of A0, it is often the case that such

problems have chordal structure [98], which can be exploited to efficiently solve problem (2.19) by

some solvers such as COSMO.jl.

Optimal choice of Dj matrices. Given the dual problem (2.19) of problem (2.18), the question

remains of how to best choose the diagonal matrices Dj for j = 1, . . . , N such that the optimal value

of (2.19) is maximized. Historically, the initial bounds in [79,84,87,89,91] assumed a number of fixed

diagonal matrices Dj . Later, [85] and [88] generalized the approach to include any diagonal matrix

D and [88] proposed an iterative algorithm which, starting with some diagonal matrix D1 (such as

D1 = I) would solve a problem similar to (2.19) at iteration k and propose a new diagonal matrix

Dk+1 that would be appended to the constraints of (2.18). This method is conceptually similar to

the cutting-plane method described in [93, §3.5] applied to the dual problem (2.19) with Dj = Ejj

for j = 1, . . . , n. (More accurately, the procedure proposed in [88] solves an SDP relaxation of (2.18)

instead of the dual problem (2.19), but it can be shown that both problems have the same optimal

value by strong duality [93, §3.3].)
It is also reasonable to ask: what are the best possible choices of Dj such that the optimal value

of (2.19) is maximized? It is not hard to show that a single (correctly chosen) diagonal matrix,

D = diag(λ), suffices and that this matrix can be efficiently found. To see this, note that we can

choose Dj = Ejj for j = 1, . . . , n such that,

D =

n'

j=1

λjDj = diag(λ). (2.20)

This would let us write

T (λ) = P +AT diag(λ)A− diag(λ), v(λ) = q −AT diag(λ)b, u(λ) =
1

2
bT diag(λ)b+ r.

We then note that picking λ" optimal for (2.19), when it exists, gives a diagonal matrix D" =

diag(λ"). Additionally, solving (2.18) with this choice of matrix D" is a special case where the
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number of quadratic constraints, N , equals 1, which can be efficiently solved and has the same

optimal value as (2.19). (See, e.g., appendix B of [90].)

2.2.3 Diagonal physics dual

Another approach to computing lower bounds for the diagonal physical design problem (5.6) is by

a direct application of Lagrange duality, originally given in [3] and later extended in [83] and [99].

This approach gives a lower bound when the objective function is separable:

f(z) =

n'

i=1

fi(zi),

and the constraints are of the following form:

Θ = {θ | −1 ≤ θ ≤ 1, θi = θj for i, j ∈ Sk, k = 1, . . .K}, (2.21)

where Sk ⊆ {1, . . . , d} for k = 1, . . . ,K are disjoint sets, specifying which entries of θ are constrained

to be equal. We additionally note that a lower bound for this constraint set also yields a lower bound

for the Boolean case, since this constraint set contains the Boolean one.

Problem Lagrangian. The basic trick here is to rewrite problem (5.6) as the following (equiva-

lent) problem:

minimize
3

n

i=1 fi(zi) + I(θ)

subject to (A0 + diag(θ))z = b0,
(2.22)

where we have pulled out the constraint θ ∈ Θ into the indicator function I : Rn → R ∪ {+∞} for

the set Θ,

I(θ) =

.
/

0
0 θ ∈ Θ

+∞ θ ∕∈ Θ.

We can then easily formulate the Lagrangian of this problem:

L(z, θ, ν) =

n'

i=1

fi(zi) + I(θ) + νT (A0 + diag(θ))z − νT b0,

which we note is separable in terms of z:

L(z, θ, ν) =

n'

i=1

1
fi(zi) + (aT

i
ν)zi + νiθizi

2
+ I(θ)− νT b0
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Dual function. As before, the dual function is defined as

g(ν) = inf
θ
inf
z

L(z, θ, ν).

Computing the inner infimum is relatively simple, which gives:

inf
z

L(z, θ, ν) =

n'

i=1

inf
zi

1
fi(zi) + (aT

i
ν)zi + νiθizi

2
+ I(θ)− νT b0

= −
n'

i=1

f∗
i
(−aT

i
ν − νiθi) + I(θ)− νT b0.

Here, f∗
i
: R → R ∪ {+∞} is the convex conjugate of fi (sometimes called the Fenchel conjugate

function or simply the conjugate function) defined as

f∗
i
(u) = sup

x

(ux− fi(x)) ,

and is well known for a number of functions [90, §3.3]. Additionally, we will make use of the fact

that f∗
i
is always a convex function, even when fi is not convex.

To compute the outer infimum, we note that we can write

g(ν) = inf
θ

4
−

n'

i=1

f∗
i
(−aT

i
ν − νiθi) + I(θ)− νT b0

5

= inf
θ

4
−

K'

k=1

'

i∈Sk

f∗
i
(−aT

i
ν − νiθk) + I(θ)

5
− νT b0

= −
K'

k=1

4
sup

−1≤θk≤1

'

i∈Sk

f∗
i
(−aT

i
ν − νiθk)

5
− νT b0

= −
K'

k=1

max

6
'

i∈Sk

f∗
i
(−aT

i
ν + νi),

'

i∈Sk

f∗
i
(−aT

i
ν − νi)

7
− νT b0,

where we have used the fact that − infx h(x) = sup
x
−h(x) for any function h, and the fact that a

scalar convex function achieves its maximum over an interval at the boundary of that interval.

Dual problem. Given the dual function g, we can find a lower bound to the original problem by

evaluating g for any ν ∈ Rn. We can then ask what’s the best possible dual bound, which gives the

following dual problem, which we will call the diagonal dual bound :

maximize −
K'

k=1

max

6
'

i∈Sk

f∗
i
(−aT

i
ν + νi),

'

i∈Sk

f∗
i
(−aT

i
ν − νi)

7
− νT b0. (2.23)
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This problem is a convex optimization problem with variable ν ∈ Rn, whose optimal value, d", can

almost always be efficiently found whenever the function f∗ can be efficiently evaluated.

Field bounds. In some cases, the bounds given by (2.23) can sometimes be very weak; e.g., if

fi = 0 for all indices i except one. One way of improving the lower bounds is to add a redundant

constraint to (2.22); i.e., a constraint such that, if z satisfies (A0 + diag(θ))z = b0, then it also

satisfies h(z) ≤ 0 for some function h : Rn → R, such that the dual function of the resulting

problem is still simple to evaluate.

One useful example, originally presented in [83], is to note that, if z satisfies

(A0 + diag(θ))z = b0,

then it also satisfies,

%A0z%2 − %diag(θ)z%2 ≤ %(A0 + diag(θ))z%2 = %b0%2,

where we have taken the norm of both sides of the expression, and the inequality follows from the

triangle inequality. Using the fact that

%A0z%2 ≥ σ1(A0)%z%2 and %diag(θ)z%2 ≤ %z%2,

where σ1(A0) is the smallest singular value of A0, we find

σ1(A0)%z%2 − %z%2 ≤ %b0%2,

or, after some rearrangement:

%z%2 ≤ %b0%2
σ1(A0)− 1

,

whenever σ1(A0) > 1. Evaluating the dual for this new problem is a simple extension of the

procedure given above as in [3, §6]. In fact, the same procedure can be extended to any norm % · %
by replacing σ1(A0) with 1/%A−1

0 %, where %A−1
0 % is the induced operator norm of A−1

0 :

%A−1
0 % = sup

'x'=1

%A−1
0 x%,

but the resulting dual function need not be easy to evaluate.

Mode volume. Another extension, presented originally in [99] is for an objective function f of

the form

f(z) =
%z%22
z2
i

,
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whenever zi ∕= 0 and is +∞ otherwise. Here, i is a fixed index and we will assume there is no

excitation; i.e., b0 = 0. Note that this objective function is similar to, and can be easily extended

to include, the cavity mode volume. Because b0 = 0, then the physics equation and objective are

0-homogeneous in z, so any feasible point z with zi ∕= 0 can be scaled by a nonzero value η ∈ R, such

that ηz is also feasible with the same objective value, f(ηz) = f(z). We can then fix a normalization

by setting zi = 1 to get an equivalent problem:

minimize %z%22
subject to (A0 + diag(θ))z = 0

zi = 1

− 1 ≤ θ ≤ 1,

(2.24)

with variables z and θ and some fixed index i. The dual for problem (2.24) can be computed using

the same method presented in this section.

2.3 Numerical examples

In this section, we show a basic comparison between some of the heuristics presented in §2.1.3 and

the performance bounds presented in §2.2 on a small problem of designing a Helmholtz resonator

in one and two dimensions. In these cases, we can certify that the heuristics find a device whose

performance is at most 2% above the global optimum, even though the original problem is likely

hard. We then show examples in the literature of much larger devices for which no lower bound has

been computed (and, indeed, cannot be computed with the current methods in a reasonable amount

of time), but has resulted in practically useful devices whose performance is much better than that

of traditional designs.

2.3.1 Small examples

In this section, we will compare the performance of three heuristics, sign-flip descent (SFD), IPOPT,

and genetic algorithms (GA), and the lower bounds presented in §2.2. We will first compare their

respective performance on a small, one-dimensional design, where both the power lower bounds and

the dual lower bounds can be computed in a reasonable amount of time, and then compare their

performance on a larger two-dimensional design. The times reported in this section are from a dual-

core 2015 MacBook Pro laptop running at 2.9GHz with 8GB of RAM. At the time of writing, this

machine is 5 years old and is roughly representative of the computational power available in more

recent standard and lower-end consumer laptops.
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Figure 2.1: Approximate designs and desired field for 1D problem.

Algorithm Objective value Time (s)

Genetic algorithm 2.54 6.40
IPOPT .652 1.70

Sign-flip descent .642 .592

Power dual bound .639 125
Diagonal dual bound .634 1.39

Table 2.1: Performance results for small design.

Problem formulation. In both scenarios, our objective function f will be to best match a desired

field ẑ,

f(z) = %z − ẑ%22,

where the desired field is a cosine wave with a Gaussian envelope on the left half of the domain,

and is equal to zero on the right half. The excitation is a single delta function in the center of the

domain. In this problem, the designer is then allowed to choose the speed of the wave at each point

in space (via the design parameters θ), such that the objective function is minimized. (For more

details and code, see the appendix 2.6.2.)

1D problem. We compare the objective performance and computational performance of the

heuristics and bounds in table 2.1. We also plot the corresponding fields and the desired field

in figure 2.1. While GA gives rather poor solutions (which only somewhat match the largest fea-

tures of the desired field), IPOPT and SFD give approximately-optimal fields that are essentially

indistinguishable from the desired one.

We find, at least in this small scenario, that IPOPT and SFD have objective values that are
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Algorithm Objective value Time (s)

Genetic algorithm N/A > 1800
IPOPT 190.71 1360

Sign-flip descent 11.9 364

Diagonal dual bound 11.7 48.5

Table 2.2: Performance results for larger design.

extremely close to that of the power bounds and diagonal dual bounds, which means that the

designs found in this scenario can, for all intents and purposes, be considered globally optimal. We

also note that GA, while simple to implement, does not find a good solution even with some amount

of tuning, while also having the worst performance of the available heuristics in terms of total time

taken. Additionally, while the power bound was slightly tighter than the diagonal dual lower bound,

it took nearly 90 times longer to converge for this small problem. This is due to the fact that SDPs

solution times scale approximately cubically with the problem dimension (i.e., are O(n3)), which

quickly becomes an issue for larger problems.

In fact, we note that it was difficult to find a desired field ẑ where the bounds and the performance

of designs found by SFD differed significantly. We encourage readers to search for some cases where

this is true by trying a few different desired fields in the code available for this chapter. For more

details, see appendix 2.6.3.

2D problem. In the 2D problem, we again test the performance of GA, IPOPT, and SFD, and

the diagonal design lower bound, though we do not compute the power bounds. We note that

näıvely attempting to compute the power bounds in (2.19) by framing the problem as an SDP

(using an SDP solver that does not support chordal sparsity) results in a dense matrix variable of

size (2512)2/2 = 2514/2, which requires approximately 16GB of memory to store, nearly double the

available memory (8GB), not counting the additional memory required to perform operations on

this matrix.

The results of this comparison are available in table 2.2 and the fields of the approximately

optimized designs are shown in figure 2.2. We terminated any algorithm whose runtime was longer

than 30 minutes on the current computer. We note that, again, SFD has surprisingly good perfor-

mance, and, when combined with the lower bound, yields a design that is guaranteed to be no more

than (11.9/11.7− 1) ≈ 1.7% suboptimal, relative to the globally optimal value (in fact, as shown in

figure 2.2, the resulting field from SFD and the desired field, ẑ, are difficult to visually distinguish).

Additionally, solving the diagonal dual bound was faster than getting an approximate design from

any of the heuristics, though we note that this is likely not the case with much larger designs or

better-optimized heuristics. For more details, see appendix 2.6.4.
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Figure 2.2: Approximate designs and desired field for 2D problem.

Discussion. The examples in this section show that modern heuristics have very good practical

performance when compared to the available lower bounds. In fact, we suspect that this is true more

generally: modern heuristics with reasonable initializations likely return designs that are very good,

if not globally optimal, even when there exist no bounds that can certify this, or when the available

bounds are very weak. Additionally, while we have made some basic performance optimizations to

the available code, we opted for clarity as opposed to pure performance in the implementation of

the algorithms presented, so the numbers above should only be interpreted as general guidelines. The

code to generate the plots and tables is available at https://github.com/cvxgrp/pd-heuristics-and-bounds.

2.3.2 Practical examples

In this section, we show practical examples in the literature where the devices found by heuristics

have been fabricated and experimentally verified. While the current bounds cannot be used to

certify that the performance of these designs is close to globally optimal in a reasonable amount of

time, the resulting designs have much better performance than that of traditional designs. For a

comprehensive overview of the history of inverse design and its applications in practice, including

older literature, we refer the reader to [23].

Splitters. Perhaps the most striking applications of physical design is in the design of compact

splitters—devices which, given some input in a specific scenario (for example, given an input at

a specific frequency) must direct as much of the input as possible into a desired output location.

Different scenarios would direct the input to different locations; i.e., the input is ‘split’ to different

outputs depending on the scenario. Some examples of such devices and their performance can be

found in, e.g., [39, 100,101].

Figure 2.3 shows an example of the splitter designed and fabricated in [102]. In this figure, three

different inputs are represented by the three different colors (blue, red, and green), which are initially

‘mixed’ in the input on the left-hand-side of the domain. The device then separates the wavelengths

into each of the three output channels.
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Figure 2.3: Scanning-electron microscope image of a three-way wavelength splitter with simulated
fields overlaid. Figure and design from [102].

Figure 2.4: Scanning-electron microscope image of an inverse-designed laser-driven particle acceler-
ator with simulated fields overlaid. Figure and design from [103].
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Particle accelerators. There are other types of devices which have been designed and manu-

factured in practice. A recent demonstration of a laser-driven particle accelerator small enough to

be placed on a chip [103] required several components to be efficient enough that the input power

did not destroy the material out of which the components were made. The necessary components

included the devices which coupled the laser to the structure, along with the actual accelerator. The

resulting designs are unintuitive enough that it is not clear a human could manually design a device

of the same (or smaller) size that had at least the same efficiency. The accelerator from the final

device of [103] is shown in figure 2.4.

Lenses. There have been a few other types of devices that have been designed by these methods

and created in practice. Some examples include flat lenses with a large depth of field that have

the same focusing efficiency as traditional lenses [41], and flat lenses with an ultra-wide field of

view [104]. There has been some additional work in creating deformable lenses whose focal length

can be controlled by stretching or contracting the material, with performances exceeding those of

traditional lenses [19].

Fabrication constraints. We note that, while there have been many numerical demonstrations of

inverse designed photonic devices, the actual fabrication of such devices has been relatively difficult

until recently, when methods that could include fabrication constraints [38, 105] and could accom-

modate a large enough number of field variables became available and were fast enough to be used

in practice. Additionally, fabrication constraints can also be applied to mass-produced photonic

circuits in a foundry [106], which makes it possible to fabricate inverse-designed photonics at scale.

2.4 Future directions

While physical design and, more specifically, inverse design, has led to some dramatic improvements

in the performance of photonic devices, there are still many questions left unanswered and possible

future avenues for research.

Standard benchmarks. There is a need for standardized benchmarks for both heuristic algo-

rithms and bounds. Similar to the standard performance benchmarks for machine learning (such

as MNIST [107], ImageNet [108], CIFAR-10 [109], etc.) and for optimization (such as the Maros–

Mészáros test set [110], MIPLIB 2017 [111], etc.), which are used to compare the performance of

different proposed algorithms, it is feasible to have a standard library of design specifications (ob-

jective functions and constraints) which either have known global solutions or a best known solution

and best known lower bound that is updated as better ones are found. This would allow for re-

searchers to have a concrete library which can be used to compare proposed algorithms against

existing ones, in terms of both objective value and computational performance. Like in machine
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learning or optimization, we suspect that such benchmarks would clarify the performance tradeoffs

of different algorithms and bounds. These benchmarks would help identify what problems are ‘hard’

for current heuristics and possibly lead to better approaches.

Improved heuristics. While some of the methods presented here can scale to very large designs

with millions to tens of millions of field and tens of thousands of design variables, many of the current

methods do not make use of the specific structure of the physical design problem and take a long time

(days or weeks) even with large computers or clusters. For example, one possible avenue is the use of

a primal-dual algorithm, which can lead to drastically improved performance for some problems (see,

e.g., [112, §3.5]). Such methods could also lead to algorithms whose natural byproduct of computing

an approximately optimal design is a bound, like in §2.2, guaranteeing that the resulting design

is close to the global optimum without requiring additional computational time. There has been

additional work with combining machine learning approaches to speeding up both simulations [113]

and optimization [114–117], which trade off training time for runtime performance.

Improved initializations. All of the heuristics used in practice often require good initializations

in order to have reasonable performance. In practice, initializations that are guided by intuition

appear to work well for many scenarios, but sometimes fail to reach what are known to be better

designs. (See, e.g., [37, §5].) As previously discussed, the bounds presented yield good initial

designs as a by-product of the optimization procedure; but this need not be true in general, and we

suspect that there might exist better methods which, while expensive to run exactly, might yield

good initial designs. For example, while sign-flip descent might be potentially very expensive to

run for large designs (as it requires solving a general constrained convex problem at each iteration)

one could perform a small number of iterations to get a reasonably good initial field and then feed

this resulting field into an optimization algorithm with faster convergence. (This latter procedure is

sometimes called ‘solution polishing’ in combinatorial optimization.) Another avenue of similar work

is the idea of ‘objective-first’ optimization [118] where the physics equation is relaxed to a penalty

with a small weight and the resulting nonconvex problem is solved to get an infeasible design with

good objective performance and (hopefully) small physics residual. This initial, infeasible design is

then passed to any of the heuristics above to attempt to find a feasible design and field with similar

performance.

Improved bounds. The small examples we have discussed here are simple cases where the bounds

and the heuristics are very close; but this need not be the case. For example, the diagonal dual

bounds given here can give weak bounds when the objective function depends only on a few entries

of the field variable z, even with the additional extensions presented. While we, in general, suspect

the power bound yields tighter results than the diagonal dual lower bound in these cases, current

off-the-shelf solvers are too slow to solve the resulting problem other than for a small number of
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field variables, n ≲ 103. One future research avenue is to create faster solvers for problem (2.19),

by exploiting the specific structure available in these problems. A second possibility is to find some

connection between the diagonal dual and power bounds; in particular, it is not clear how one is

related to the other, if at all. We conjecture that the power bounds (2.19) are always guaranteed

to be at least as tight as the diagonal dual ones (2.23) whenever the function f is a separable

convex quadratic, and where the constraint sets Sk are singletons (equation (2.21) with Sk = {k}
for k = 1, . . . , n) but have been unable to prove this. It is also of practical interest to create

lower bounds which give approximate scaling rules for designs, which would help a designer choose

appropriate device sizes and materials for a desired objective.

2.5 Conclusion

There has been tremendous progress in the area of photonic inverse design, including foundry-based

fabrication and the use of design software in a wide range of academic and industry labs. Still,

there is a lot to be improved, including, but not limited to: designing standard benchmarks and

comparisons for heuristics, overcoming computational bottlenecks in order to design larger devices

than those which are currently possible, and the improvement of bounds (both theoretically and

in terms of computational performance) which currently either do not apply, or are very difficult

to compute, for many of the devices used in practice. Yet, despite the drawbacks of the current

approaches, inverse design has yielded incredible practical benefits, and we expect that such methods

will, in the near future, become a standard approach to creating practical, efficient devices that far

exceed the performance of their traditionally-designed counterparts.

2.6 Appendix

2.6.1 Bound equivalence

We show that the bounds presented in [85,88] are equivalent to the ones given in §2.2.2.

Derivation. First, we derive the bounds presented using this notation. We define the displacement

field yi = γizi, for i = 1, . . . , n, where γi = (1 + θi)/2. (Note that θi ∈ [−1, 1] whenever γi ∈ [0, 1].)

The diagonal physics equation can then be written in terms of the field z and the displacement field

y:

(2A0 − I)z + y = 2b0, yi = γizi, i = 1, . . . , n,

where γ ∈ [0, 1]n. We will define G = (2A0 − I)−1 (this can be recognized, roughly speaking, as

the Green’s function) and b′ = 2Gb0 (which is sometimes called the ‘incident field’) for notational



CHAPTER 2. AN OVERVIEW OF PHOTONIC DESIGN 31

convenience. We can then rewrite the diagonal physics equation using G and b′:

zi + gT
i
y = b′

i
, yi = γizi, i = 1, . . . , n, (2.25)

where gT
i
denotes the ith row of G. Multiplying on the left by yi, we find that y and z must satisfy

yi(zi + gT
i
y) = yib

′
i
, i = 1, . . . , n.

Note that y2
i
= γ2

i
z2
i
≤ γiz

2
i
= yizi because γ2

i
≤ γi, since γi ∈ [0, 1]. Using this result, we find the

following quadratic inequalities depending only on the displacement field y:

yi(yi + gT
i
y) ≤ yib

′
i
, i = 1, . . . , n.

Scaling each of the i inequalities by any nonnegative value λi ≥ 0 and summing them together

implies that y must satisfy:

yTDy + yTDGy ≤ yTDb′, (2.26)

where D = diag(λ) is any matrix with nonnegative diagonal entries. These are the bounds presented

in [85,88] in the case where Θ is a box rather than a Boolean constraint.

Tightness. As expected, these bounds are also tight in the sense that, if y satisfies (2.26) for all

nonnegative diagonal matrices D, then there exists a feasible design θ and a field z such that z and

θ satisfy the diagonal physical equation, and the displacement field y satisfies yi = (1 + θi)zi/2 for

−1 ≤ θi ≤ 1, or, equivalently, that yi = γizi, where 0 ≤ γi ≤ 1 for i = 1, . . . , n.

To show this, we will consider (as before) only the diagonal matrices D = eie
T

i
. The bound then

implies that

yi(yi + gT
i
y) ≤ yib

′
i
, i = 1, . . . , n.

We can then choose zi = b′
i
− gT

i
y and

γi =

.
/

0
yi/(b

′
i
− gT

i
y) b′

i
− gT

i
y ∕= 0

0 otherwise,

for i = 1, . . . , n. Note that zi obviously satisfies zi + gT
i
y = b′

i
and, whenever b′

i
− gT

i
y ∕= 0, we have

yi = γizi, by construction. On the other hand, if b′
i
− gT

i
y = 0, then

y2
i
= yi(yi + gT

i
y − b′

i
) ≤ 0,

so yi = 0 = γizi, since γi = 0 whenever b′
i
− gT

i
y = 0, by definition. In other words, given a

displacement field y satisfying (2.26) for all nonnegative diagonal matrices, we have constructed a
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field z and a design θ = 2γ−1 such that y, z, and −1 ≤ θ ≤ 1 all satisfy the physics equation (2.25),

or, equivalently, z and θ satisfy the diagonal physics equation.

Equivalence. The equivalence between the bounds follows immediately from the fact that (2.26)

holds for all nonnegative diagonal matrices D if, and only if, the physics equation (2.25) holds for

this choice of y, z, and θ, which, in turn, holds if, and only if, the original family of power bounds

over z and θ holds for all diagonal matrices.

2.6.2 Numerical examples

In this subsection, we focus on two basic numerical experiments for comparing both heuristics and

lower bounds. Additionally, all Julia [119] code for the examples can be found at

https://github.com/cvxgrp/pd-heuristics-and-bounds

The optimization problems used in computing the bounds were specified using the JuMP [120]

domain-specific language in Julia, and solved using Mosek [95].

2.6.3 Small design

In this scenario, we are given a device whose field must satisfy the discretized Helmholtz equation

in one dimension. At every point in the domain, the designer is allowed to choose the speed of the

wave in the material within some specified range, such that the resulting field best matches some

desired field.

Helmholtz’s equation. In one dimension, we can write Helmholtz’s equation in the interval

[−1, 1] as:
∂2u(x)

∂x2
+

ω2

c(x)2
u(x) = v(x), −1 ≤ x ≤ 1, (2.27)

where u : [−1, 1] → R is the amplitude of the wave, while ω ∈ R is the angular frequency and

c : [−1, 1] → R++ is the speed of the wave in the material, and v : [−1, 1] → R is the excitation.

We will assume Dirichlet boundary conditions for simplicity; i.e., that u(−1) = u(1) = 0.

Discretization. We can write a simple discretization of the above equation by subdividing the

interval [−1, 1] into n equidistant points {xi} for i = 1, . . . , n. We then approximate the second

derivative using finite-differences such that

∂2u(xi)

∂x2
≈ zi−1 − 2zi + zi+1

h2
, i = 1, . . . , n,

where h is the separation xi−xi−1 for any i = 2, . . . , n and is equal to h = 2/(n−1), while zi = u(xi)

for i = 1, . . . , n. Additionally, we have defined z0 = zn+1 = 0 for convenience.
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If we then define ω2/c(xi)
2 = θi, then we can approximate equation (2.27) as a diagonal physics

equation of the form (2.5), where

A0 =
1

h2

(

)))))))*

−2 1 0 . . . 0

1 −2 1 . . . 0

0 1 −2 . . . 0
...

...
...

. . .
...

0 0 0 . . . −2

+

,,,,,,,-

, (2.28)

and (b0)i = v(xi) for i = 1, . . . , n.

Problem data. In this problem, we will seek to minimize the squared Euclidean distance between

the field z and some desired field ẑ; i.e., the objective is

f(z) = %z − ẑ%22 =

n'

i=1

(zi − ẑi)
2,

and we choose ẑ to be a cosine wave with a Gaussian envelope of width σ/
√
2, whenever xi < 0 and

0 when xi ≥ 0:

ẑi =

.
/

0
cos(ωxi) exp(−x2

i
/σ2) xi < 0

0 xi ≥ 0.
(2.29)

Note that this function is discontinuous at 0. For the small numerical experiment, we will choose

σ = 1/2, ω = 6π, and Θ = [1, 1.5]n. We will also set b(n+1)/2 = 2 and zero otherwise as our

excitation, and set n, the number of gridpoints, to be n = 1001. This means thatthere are 1001

design parameters and field variables, which, in practice, is a very small number when compared to

current applications.

2.6.4 Larger design

In this example, we will show an example of a larger physical design problem with n = d = 2512 =

63001, that is similar in spirit to the smaller design, but is large enough that sparsity has to be

exploited in order to have reasonable run time performance.

2D Helmholtz equation. For this problem, we discretize the 2D Helmholtz’s equation:

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
+

ω2

c(x, y)2
u(x, y) = v(x, y),

over the domain (x, y) ∈ [−1, 1]2. Here, as before u : [−1, 1]2 → R is the amplitude of the wave, while

ω ∈ R is the angular frequency, c : [−1, 1]2 → R++ is the speed of the wave in the material, and
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v : [−1, 1]2 → R is the excitation. We assume Dirichlet boundary conditions; i.e., that u(x, y) = 0

at the boundary of the domain.

Discretization. Assuming that we have n = l2 equally spaced gridpoints (xi, yi) ∈ [−1, 1]2 (i.e.,

there are l points along a given axis), we will let zi be the approximate value of u(xi, yi). Writing

the second-order difference matrix in (2.28) as ∆ ∈ Rl×l, we can approximate the sum of the partial

derivatives as

∂2u(xi, yi)

∂x2
+

∂2u(xi, yi)

∂y2
≈ ((Il ⊗∆+∆⊗ Il)z)i, i = 1, . . . , n,

where Il is the l× l identity matrix, and ⊗ is the Kronecker product. The resulting problem is then

a diagonal physical design problem with

A0 = Il ⊗∆+∆⊗ Il,

and (b0)i = v(xi, yi) for i = 1, . . . , n. Note that the size of A0 is n × n = l2 × l2; so the total

number of entries of the matrix grows in the fourth power of the side length. On the other hand,

the resulting matrix is very sparse because less than 5n of the entries are not zero. In other words,

when l = 100, the percentage of nonzero entries is less than .05%.

Problem data. As before, the objective is to minimize the squared difference of the resulting field

z and some desired field ẑ:

f(z) = %z − ẑ%22.

Here ẑ is the two-dimensional analogue of (2.29),

ẑi =

.
/

0
cos(ωxi) cos(ωyi) exp(−(x2

i
+ y2

i
)/σ2) xi < 0

0 xi ≥ 0,

for i = 1, . . . , n. We will again choose Θ = [1, 1.5]n, ω = 6π and σ = 1/2, and b(n2+1)/2 = 1, along

with l = 251 (and n = l2 = 65001), which results in a problem with 65001 design parameters and

field variables. We encourage the reader to try different choices parameters in the provided code

and explore the resulting heuristic performance, bounds, and time taken by the algorithms.



Chapter 3

A new heuristic

The material from this chapter is adapted from [2].

3.1 Introduction

Computer-aided physical design has become an important tool in many fields including photon-

ics [?, 23], mechanical design [121], circuit design [122, 123], and thermal design [124, 125]. In many

cases, the design problem is formulated as a constrained nonconvex optimization problem which is

then approximately minimized using local optimization methods such as ADMM [43], evolutionary

algorithms [123], and the method of moving asymptotes [124], among many others.

More generally, a physical design problem can be phrased in the following way: we are allowed

to choose some design parameters (e.g., the permittivity in photonic design or the conductances in

diffusion design) at each point in a domain, within some limits, in order to minimize an objective

function of the field (this can be, e.g., the electric field in photonic design, or a vector containing the

potentials, flows, and potential differences in diffusion design). The constraints specify the physics

of the problem, connecting the design variables to the field variables (e.g., Maxwell’s equations in

photonics, or a diffusion equation such as the heat equation in diffusion design). We note that,

in many cases, the physics constraints are linear equations in the field variables (when the design

parameters are held constant), and linear equations in the design parameters (when the fields are

held constant), which has led to some heuristics with good performance [43].

There has been recent interest in understanding global properties of solutions for physical design

problems: lower bounds for optimal design objectives in photonic design have been studied via

the use of convex relaxations found by physical arguments [79, 82], duality theory [?, 3, 86], among

others [81]. We instead analyze a convex restriction (see [126], §2.1) of the physical design problem,

potentially providing another approach for analyzing properties of global solutions and for creating

fast heuristics.

35
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In this chapter, we consider a simple (but very general) formulation of a class of physical design

problems which includes problems in thermal design, photonic inverse design with scalar fields and

convex objectives, and some types of control problems. This formulation offers some insights into

the properties of global solutions for these problems. For example, in many practical cases, problems

with linear objectives can be shown to have optimal extremal designs (in the case of physical design)

or bang-bang controls (in the case of control). As another example, we observe that it suffices to

know only the sign of a subset of variables in order to globally solve the problem efficiently, even

though the original problem is NP-hard. The formulation also suggests a heuristic which appears to

have good performance for many kinds of physical design problems, and we give numerical examples

of this heuristic applied to a few different problems.

3.2 General problem formulation

We consider a problem of the form

minimize f(x, u, v)

subject to (x, u, v) ∈ C

u = diag(θ)v

θmin ≤ θ ≤ θmax,

(3.1)

where f : Rn × Rm × Rm → R is a convex function over our variables x ∈ Rm and u, v ∈ Rn,

C ⊆ Rn × Rm × Rm is a convex constraint set, and θ ∈ Rn is our design variable whose limits

are θmin, θmax ∈ Rn. While apparently simple, many physical design problems can be expressed as

instances of problem (5.6); we show a few examples in §3.4. We call (x, u, v) the field (corresponding

to, e.g., the electric field in photonic design) and θ the design parameters (corresponding to, e.g.,

the permittivity in photonic design). We say that θ is extremal whenever θi ∈ {θmin
i

, θmax
i

} for

each i = 1, . . . ,m. The physics of the problem is encoded in the constraints (x, u, v) ∈ C and

u = diag(θ)v.

In this problem, the convex set C can be any convex set specifying constraints on the variables

(x, u, v), such as linear equality constraints. On the other hand, the design parameters θ enter in a

very specific way: as a diagonal term relating u and v. Another way to say this is that each design

parameter θi is the ratio of two field parameters, ui and vi.

We note that the problem (5.6) is convex in (x, u, v) whenever θ is fixed, and convex in (x, u, θ)

whenever v is fixed. In practice, there has been great success in applying heuristics for approximately

minimizing instances of (5.6) using this observation [42].
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Absolute upper bound formulation. Problem (5.6) is equivalent to

minimize f(x, u, v)

subject to (x, u, v) ∈ C

u = diag(θ̄)v + diag(ρ)w

|w| ≤ |v|,

(3.2)

where the absolute value is taken elementwise. The variables of problem (3.2) are x ∈ Rm and

u, v, w ∈ Rn, while θ̄ = (θmax + θmin)/2 and ρ = (θmax − θmin)/2 are constants. Note that θ̄ is the

middle value of the physical parameter interval, and ρ is the radius, i.e., half the range or width of

the interval.

The equivalence between problems (5.6) and (3.2) can be seen by noting that, for every feasible

(x, u, v, w) for problem (3.2) we can set,

θi =

.
/

0
θ̄i + ρiwi/vi vi ∕= 0,

θ̄i otherwise,
(3.3)

for i = 1, . . . ,m. Then, (x, u, v, θ) is feasible for (5.6), with the same objective value. Note that, if

vi = 0, any choice of θi ∈ [θmin
i

, θmax
i

] would suffice.

Similarly, for any (x, u, v, θ) that is feasible for (5.6), we can set

wi =

8
θi − θ̄i
ρi

9
vi, i = 1, . . . ,m,

and then (x, u, v, w) is feasible for problem (3.2) with the same objective value.

We will refer to problem (3.2) as the absolute-upper-bound formulation of problem (5.6). This

problem, like problem (5.6), is nonconvex due to the inequality |w| ≤ |v|, and is hard to solve exactly.

NP-hardness. We can reduce any mixed-integer convex program (MICP) to an instance of (3.2),

implying that this problem is hard, as any instance of an NP-complete problem is easily reducible

to instances of the MICP problem [45].

The reduction follows since we can force v to be binary in problem (3.2). First, choose θ̄ = 0,

ρ = 1 (and therefore u = w), and add u = 1 to the constraint set. This immediately implies that

1 ≤ |v|. Adding the convex constraint |v| ≤ 1 to the constraint set C, yields v ∈ {±1}n, as required.
Since C and f can be otherwise freely chosen, the result follows.

Known signs. If the signs of an optimal v" are known for problem (3.2), then the problem

becomes convex. We can see this as follows. If s = sign(v") ∈ {±1}m is known, then we can solve
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the following convex problem [90, §4]:

minimize f(x, u, v)

subject to (x, u, v) ∈ C

u = diag(θ̄)v + diag(ρ)w

|w| ≤ s ◦ v,

(3.4)

where s ◦ v is the elementwise product of s and v. Note that v" (and its associated values of x", u",

and w") are feasible for this instance of (3.4) since |v"| = s ◦ v", which implies that a solution of

this instance of (3.4) must be globally optimal for (3.2).

Global solution. Note that problem (3.4) generates a family of optimization problems over the set

of possible signs, s ∈ {±1}m. This suggests a simple, if inefficient, way to globally solve problem (3.2)

and therefore problem (5.6): solve problem (3.4) for the 2m possible signs, s ∈ {±1}m, to obtain

optimal values p"(s) for each set of signs s. A solution (x", u", v", w") for any optimal set of signs,

s" ∈ argmin
s∈{±1}m p"(s), is then a solution to (3.2) and therefore to (5.6).

Of course, this algorithm may not be useful in practice for anything but the smallest values of m,

but it implies that solving problem (5.6) requires solving only a finite number of convex problems.

Extremality principle. The rewriting given in (3.4) also yields an interesting insight. If prob-

lem (3.4) is a feasible linear program and C is an affine set with {u | (x, u, v) ∈ C} = Rm, i.e., for each

u ∈ Rm there exists a v ∈ Rm and an x ∈ Rn such that (x, u, v) ∈ C, then there exists a solution

of (3.4) such that all entries of the inequality |w| ≤ s ◦ v hold at equality. (See, e.g., [127, §2.6].)
This rewriting then implies that there exists an optimal design for which θ is extremal, by (3.3). A

numerical example of this principle is found in §3.5.2.

3.3 Sign flip descent

Since problem (3.4) generates a family of optimization problems parametrized by the sign vector

s ∈ {±1}m, we can view the original physical design problem (5.6) as a problem of choosing an

optimal Boolean vector. A simple way of approximately optimizing (3.2) is: at each iteration i,

start with some sign vector si ∈ {±1}m and solve (3.4) to obtain an optimal value pi. We then

consider a rule for proposing a new sign vector, say s̃i ∈ {±1}m, for which we again solve (3.4)

and then obtain a new optimal value p̃i. If p̃i < pi, we then keep this new sign vector, i.e., we set

si+1 = s̃i, and repeat the procedure; otherwise, we discard s̃i by setting si+1 = si, and repeat the

procedure, proposing a new sign vector in the next iteration. This is outlined in algorithm 1.
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Algorithm 1 Sign flip descent

Start with a feasible initial sign vector s1 ∈ {±1}m.

Optimize. Solve problem (3.4) with signs s1 to receive objective value p1.

for k = 1, . . . , niter do

Propose. Propose a new set of signs s̃k ∈ {±1}m.

Optimize. Solve (3.4) with the sign vector s̃k to receive objective value p̃k.

if p̃k < pk then

sk+1 = s̃k.

else

sk+1 = sk.

end if

end for

return sniter .

By construction, any algorithm of the form of algorithm 1 is a descent algorithm since each

iteration is feasible and the objective value is decreasing on each iteration. We outline two possible

rules for proposing new sets of signs at each iteration.

Greedy sign rule. A simple rule for choosing signs is to begin at iteration k with some set of

signs sk. We then define a new set of signs s̃k with s̃k = sk except at the kth entry where we have

s̃k
k
= −sk

k
(or, if k > m then we pick the entry at index 1+(k−1 mod m), i.e., such that the entries

are changed, one-by-one, in a round-robin fashion). We stop whenever flipping any one entry of sk

does not yield a lower objective value.

The greedy sign rule has two useful properties. First, the rule guarantees local optimality in the

following sense: if algorithm 1 returns s", then changing any one sign of s" will not decrease the

objective value. Second, the rule terminates in finite time, since the corresponding algorithm is a

descent algorithm and there are a finite number of possible sign vectors. On the other hand, the

algorithm is often slow for anything but the smallest designs: to reach the terminating condition,

we have to solve at least m convex optimization problems.

Field-based rule. Another simple rule that appears to work very well in practice is based on the

observation that, for many choices of sign vectors sk, the inequality |w| ≤ sk ◦ v has many entries

of v that are zero. If vi is zero for some index i = 1, . . . ,m, this suggests that the sign sk
i
might

have been originally set incorrectly: in this case, we propose a new vector s̃k which is equal sk at all

entries i = 1, . . . ,m for which vi is nonzero and has opposite sign at all entries i for which vi is zero.

Note that this new proposed vector will always have an optimal value p̃k which is at least as

small as the optimal value for sk, i.e., p̃k ≤ pk. This observation, coupled with the proposed rule,
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suggests that we should stop whenever there are no signs left to flip, or whenever the iterations stop

decreasing as quickly as desired, i.e., whenever pk − pk+1 < ε.

While this rule does not necessarily guarantee local optimality, it always terminates in finite time

with the given stopping conditions and appears to work well in practice (requiring, in comparison

to the greedy sign rule, much fewer than m iterations to terminate) as shown in §3.5.

3.4 Applications

We describe a few interesting design problems that reduce to problems of the form of (5.6).

3.4.1 Diagonal physical design

As in, e.g., [3], many physical design problems can be written in the following way:

minimize f(z)

subject to (A+ diag(θ))z = b

θmin ≤ θ ≤ θmax,

(3.5)

where A ∈ Rn×n describes the physics of the problem, while b ∈ Rn describes the excitation, and

θ ∈ Rn are the design parameters of the system, chosen to minimize some convex objective function

f : Rn → R of the field z ∈ Rn. Our variables in this problem are the field z and the design

parameters θ.

We can write a problem of the form of (3.5) as a problem of the form (5.6) by introducing a new

variable u with constraint u = diag(θ)z and rewriting the equality constraint of (3.5) with this new

variable, Az + u = b. As the set of (z, u) satisfying Az + u = b forms a convex (in fact, affine) set,

the resulting problem,

minimize f(z)

subject to Az + u = b

u = diag(θ)z

θmin ≤ θ ≤ θmax,

is of the form of (5.6) which can be easily rewritten into the form of (3.2).

3.4.2 Static diffusion design

Consider a flow problem on a graph G = (V,E) where we choose the conductance gk ∈ R across

each edge k ∈ E, constrained to satisfy gmin
k

≤ gk ≤ gmax
k

, to minimize some function f : R|V | → R

of the potentials e ∈ R|V |, given some sources s ∈ R|V |.
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To compactly write the conditions this system must satisfy, let the matrix A ∈ R|V |×|E| be the

incidence matrix for the graph G defined to be (see [94, §7.3]):

Aij =

.
:::/

:::0

+1 edge j points to node i

−1 edge j points from node i

0 otherwise.

We can then write the steady-state diffusion equation as

Adiag(g)AT e = s, (3.6)

where Adiag(g)AT can be recognized as the graph Laplacian of G with edge weights g. This

equation can also be seen as the discrete form of the heat equation on a graph G [128].

The corresponding optimization problem is then an instance of (5.6):

minimize f(e)

subject to v = AT e

Aw = s

w = diag(g)v

gmin ≤ g ≤ gmax,

(3.7)

where we have introduced two new variables w, v ∈ R|E|, in addition to the potential e ∈ R|V |

and the conductances g ∈ R|E|. As before, A ∈ R|V |×|E| is the incidence matrix, s ∈ R|V | are the

sources at each node, while c ∈ Rn is a vector such that cT e is the average temperature over the

desired region.

3.4.3 Dynamic diffusion control

Similarly to §3.4.2, we can consider the time-varying generalization of (3.6) given by

Cet+1 = Cet − hAdiag(gt)A
T et + hBut,

at each time t = 1, . . . , T , with step size h > 0. Here, c ∈ R
|V |
++ is the heat capacity of each node and

C = diag(c), while ut ∈ Rn are the inputs given to the system, B ∈ R|V |×n is a matrix mapping

these inputs to the power added or removed from each node, gt ∈ R|V | are the conductances at each

node, and et ∈ R|V | is the temperature at each node.

In this case, we can minimize any convex function of the temperatures and inputs by appropriately
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choosing the conductances and inputs:

minimize f(e, u)

subject to Cet+1 = Cet − hAwt + hBut, t ∈ [T ]

vt = AT et, t ∈ [T ]

wt = diag(gt)vt, t ∈ [T ]

gmin ≤ gt ≤ gmax, t ∈ [T ],

(3.8)

where, as before, we have introduced the variables vt, wt ∈ R|E|, for each t ∈ [T ] and [T ] =

{1, . . . , T}.
We can see problem (3.8) as a nontraditional control problem. A particular example is: we

have a set of rooms with temperatures et at time t which we wish to keep within some comfortable

temperature range. We are allowed to open and close vents (equivalently, change the conductances

gt at each time t) and turn on and off heat pumps (via the control variable ut), while paying a cost

for the latter. A simple question could be: what is an optimal set of actions such that the input cost

is minimized while keeping the temperatures et within some specified bounds? We show a simple

example of this in §3.5.3.

3.5 Numerical examples

Julia [119] code for all examples in this section is available in the following Github repository:

angeris/pd-heuristic. We use the JuMP modeling language [120] to interface with Mosek [95].

All times reported are on a 2015 2.9 GHz dual-core MacBook Pro.

3.5.1 Photonic design

In this example, we wish to choose the speed of a wave satisfying Helmholtz’s equation at each point

in some domain Ω ⊆ R2 in order to minimize a convex function of the field.

Helmholtz’s equation. More specifically, the speed of the wave c : Ω → R++ is chosen such that

the field ψ : Ω → R at a specific frequency ω ∈ R+ with excitation ϕ : Ω → R satisfies Helmholtz’s

equation,

∇2ψ(x, y) +

8
ω

c(x, y)

92

ψ(x, y) = ϕ(x, y), (3.9)

at each point (x, y) ∈ Ω. Additionally, we require that the chosen speeds are bounded such that

0 < cmin(x, y) ≤ c(x, y) ≤ cmax(x, y) at each point (x, y) ∈ Ω, and we assume Dirichlet boundary

conditions such that ψ(x, y) = 0 for (x, y) ∈ ∂Ω, i.e., we require the field to be zero at every point
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on the boundary of the domain. In electromagnetics, this condition corresponds to having a perfect

conductor at the boundary.

In this case (as in [3, §5.1]), we will work with a discretized form of (4.12) where z ∈ Rn is the

discretized field (ψ), b ∈ Rn is the discretized excitation (ϕ), θ ∈ Rn is the discretized speed of the

wave (c), and A ∈ Rn×n is the discretized version of the Laplacian operator (∇2), such that

Az + diag(θ)z = b, (3.10)

approximates (4.12) at each point (xi, yi) ∈ Ω for i = 1, . . . , n. We assume that the discretization is

such that Ω is a 1× 1 box.

Problem data. In this case, the problem data are given by ω = 4π, with n = 101× 101 = 10201,

while the convex objective function f : Rn → R is given by

f(z) =
'

i∈B

z2
i
,

where B ⊆ {1, . . . , n} is the box indicated in figure 3.1, and the excitation b is defined as

bi =

.
/

0
1 i ∈ S

0 otherwise,

for each i = 1, . . . , n, where S ⊆ {1, . . . , n} is the box indicated in figure 3.1. Here, θmin = 1 and

θmax = 2. We set the tolerance parameter of the algorithm to ε = 10−4. We initialize the algorithm

by finding a solution to equation (3.10) with θ = (θmax + θmin)/2 and use the signs of this solution

as the initial sign vector.

Numerical results. With the given problem data, the algorithm terminates at 102 iterations with

a total time of about 4 minutes, roughly around 2 seconds per iteration. This time could be very

much shortened since the current implementation does not warm-start any of the current iterations,

essentially solving the problem from scratch at each iteration. The final design is shown in figure 3.1

and its final field is shown in figure 3.2.

3.5.2 Thermal design

In this design problem, as in §3.4.2, we seek to set the conductances on a graph in order to minimize

the average temperature of a subset of points in the center of a 2D grid of size m × m, given a

heat source and a heat sink at opposite corners of the 2D grid. This is an instance of the diffusion

problem where A ∈ R|E|×|V | is the incidence matrix of the grid and s ∈ R|V | are the heat sources
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Figure 3.1: Approximately optimal photonic design. The leftmost figure specifies S ⊆ {1, . . . , n} in
purple, the center specifies B ⊆ {1, . . . , n}, while the rightmost figure gives the design, θ.

Figure 3.2: Field for approximately optimal design.
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and sinks. This problem can be written as an instance of (3.7) where the potentials e ∈ R|V | are

the temperatures at each point in the grid.

Problem data. Our convex objective function f : R|V | → R is given by

f(e) = cT e,

where c ∈ R|V | is a vector such that ci = 1 if vertex i lies in the center square of size ⌊(m− 1)/4⌋ ×
⌊(m− 1)/4⌋ while ci = 0 otherwise. There is a heat source set at the bottom left corner of the grid

and a heat sink set at the top right corner of the grid. We set the minimal and maximal conductances

as gmin = 1 and gmax = 10 at each edge.

We approximately optimize the conductances in this problem by using the field-based heuristic

described in §3.3. The directions are initialized by solving the problem with uniform conductances.

Numerical results. A small example is given in figure 3.3 with m = 11 (which shows the chosen

directions of flow), while a relatively large design is given in figure 3.4 with m = 51. In both

figures, thick edges indicate that conductance is maximized at that edge while thin edges indicate

that conductance is minimized (see the extremality principle in §3.2 for more details). The color

of each node indicates the potential value, with red values indicating a higher potential and blue

values indicating a lower one. We note that our heuristic recovers similar tendril-like patterns to

those found in, e.g., [125, §4].
With the provided data, the heuristic terminates after 7 iterations, taking a total time of around

.4 seconds in the case with m = 11, with an objective value of about .115. The case with m = 51

terminates after 14 iterations, taking a total time of around 20.5 seconds with an objective value of

approximately .239.

3.5.3 Temperature control

In this example, we wish to keep the temperature of two rooms in a range of desired temperatures by

appropriately closing and opening vents to the outside and between rooms and turning heat pumps

on and off at specified times, while minimizing the total power consumption. We will also require

that the controls and the temperatures be periodic.

Problem data. We can write this as an instance of problem (3.8) with

B = .2I, C = diag((.3, .1)), gmin = 1, gmax = 10,
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Figure 3.3: Approximately optimal design for m = 11. Arrows indicate the direction of flow used
for this design, colors indicate the temperature at each node, while edge thickness indicates the
conductance at each edge. The grey box indicates the center square.

Figure 3.4: Approximately optimal design for m = 51.
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(et)3 (et)1
(gt)1

(et)2
(gt)2 (gt)3

(et)3

Figure 3.5: Graph set up for the temperature control problem. Here, (et)3 is the ambient temperature
at time t, while (et)1 and (et)2 are the temperatures of rooms 1 and 2, respectively. The gt are the
conductances of the indicated edges.

and A is the incidence matrix of the graph shown in figure 3.5, while

(et)3 = 70 + 20 sin

8
4πt

T

9
, t = 1, . . . , T,

where T = 300. Since we will require that the room temperatures be periodic, we then have

(e1)1 = (eT )1, (e1)2 = (eT )2.

Finally, we will require that the temperatures remain in some a range,

65 ≤ (et)1, (et)2 ≤ 75, t = 1, . . . , T,

while minimizing

f(e, u) = h%u%2 + ηh

T−1'

t=1

%et+1 − et%2, (3.11)

where h = 1/T and η = 10−4 is a small regularization parameter that ensures the resulting trajec-

tories are smooth.

We initialize the problem with the signs given by assuming that gt = (gmin + gmax)/2 for all

t = 1, . . . , T − 1 and using the heat pumps ut to ensure the temperature in the rooms remains above

65 and below 75.

Numerical results. We approximately optimize this instance using the field-based heuristic

of §3.3, with the result shown in figure 3.6. With the provided data, the heuristic terminates in

3 iterations, with a total time of around 1.56 seconds. The final approximately optimized problem

has an objective value of around 836.
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Figure 3.6: Approximately optimal control.
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3.6 Conclusion

This chapter presented a new problem formulation and an associated heuristic which may be of

practical use for a general class of physical design problems, which appears to have good practical

performance on many different kinds of physical design problems. Additionally, this problem for-

mulation implies a few interesting facts, most notably that the class of problems can be efficiently

solved even when only the signs of an optimal solution are known and that, in a few important cases,

there exist globally optimal extremal designs.

Future work. There are several notable exceptions to the class of problems which are included

in the formulation given in (5.6), with the most important being designs whose parameters are

constrained to be equal. This means that, at the moment, a direct application to photonic design

in three dimensions, the usual photonic design problem with complex fields, circuit design with

complex impedances, or multi-scenario physical design, is not possible with the current problem

formulation. We suspect a suitable generalization of (5.6) might yield similarly interesting insights

and, potentially, new heuristics for physical design.



Chapter 4

Computational bounds

The material in this chapter is adapted from [3].

Introduction

Computer-aided design of physical systems is growing rapidly in several fields, including photon-

ics [23] (where it is known as inverse design), horn design [129], and mechanical design (aerospace,

structures) [130]. These design methods formulate the physical design problem as a constrained

nonconvex optimization problem, and then use local optimization to attempt to solve the problem.

Commonly used methods include gradient descent, with adjoint-based evaluations of the gradi-

ent [131], methods that alternate optimizing over the structure and over the response [132], and the

alternating directions method of multipliers (ADMM) [133], among others. These methods can be

very effective, in the sense of producing what appear to be very good physical designs, for example

when compared to classical design approaches.

Because they are local optimization methods, they do not guarantee that a globally optimal

design is found, nor do we know how far from optimal the resulting design is. This chapter addresses

the question of how far a physical design is from globally optimal by computing a lower bound on

the optimal objective value of the optimization problem. A lower bound on the objective value can

be interpreted as an impossibility result since it asserts that no physical design can have a lower

objective than a number we compute.

Our bound is similar in spirit to analytical lower bounds, which give lower bounds as simple

formulas in terms of gross quantities like temperature and wavelength, based on very simplified

models and objectives, e.g., the Reynolds number [134], the Carnot efficiency limit [135, §3.8], or
the optical diffraction limit [136, §8.6]. There has been some additional work in bounding some other

quantities and figures of merit for optical systems, including the local density of states [137,138] for

different types of materials, via fundamental physical principles. In contrast, our method computes

50
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a (numerical) lower bound for the optimization objective for each design problem.

In this chapter, we derive a parametrized family of lower bounds on the optimal objective for

a class of physical design problems, using Lagrange duality. We can optimize over the parameter,

to obtain the best (largest) lower bound, by solving the Lagrange dual problem—which is convex

even though the original design problem is not. We illustrate our lower bound on a two-dimensional

multi-mode resonator. Our lower bound is close to the objective obtained by a design using ADMM,

which shows that the design, and indeed our lower bound, are both very close to the global optimum.

4.1 Physical design

4.1.1 Physical design problem

In physical design, we design a structure so that the field, under a given excitation, is close to some

desired or target field. We parametrize the structure using a vector θ, and we denote the field by

the vector z. In photonic design, for example, we choose the index of refraction at each rectangle

on a grid, within limits, to achieve or get close to a desired electromagnetic field.

We can express this as the following optimization problem:

minimize 1
2 %W (z − ẑ)%22

subject to (A+ diag(θ))z = b

0 ≤ θ ≤ θmax,

(4.1)

with variables z ∈ Rn (the field) and θ ∈ Rn, which describes the physical design. The data are

the weight matrix W ∈ Rn×n, which is diagonal with positive diagonal entries, the desired or target

field ẑ ∈ Rn, the matrix A ∈ Rn×n, the excitation vector b ∈ Rn, and the vector θmax of limits on

the physical design parameter θ. The constraint equation (A + diag(θ))z = b encodes the physics

of the problem. We let p" denote the optimal value of (4.1).

We can handle the case when the lower limit on the physical parameter is nonzero, for example,

θmin ≤ θ ≤ θmax. We do this by replacing the lower limit by 0, the upper limit by θmax − θmin, and

replacing A with A + diag(θmin). Additionally, the construction extends easily to the case where

the field z, the matrix A, and the excitation b have complex entries.

When the coefficient matrix in the physics equation (A+diag(θ))z = b is nonsingular, there is a

unique field, z = (A+diag(θ))−1b. In some applications, however, the coefficient matrix is singular,

and there is either no field that satisfies the equations, or many. In the former case, we take the

objective to be +∞. In the latter case, the set of solutions is an affine set and simple least squares

can be used to find the field that satisfies the physics equation and minimizes the objective.

An important special case occurs when we seek a mode (eigenvector) of a system that is close

to ẑ. To do this we take b = 0 and subtract λI from the coefficient matrix, where λ is the required
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eigenvalue. We can handle the case of unspecified eigenvalues by a simple extension described later

in problem (4.14), where λ also becomes a design variable, subject to a lower and upper bound.

In the problem (4.1), the physical design parameters enter in a very specific way: as the diagonal

entries of the coefficient matrix of the physics equation. Many physics equations have this form for a

suitable definition of the field z and parameter θ, including the time-independent Schödinger equa-

tion, Helmholtz’s equation, the heat equation, and Maxwell’s equations in one dimension. (Maxwell’s

equations in two and three dimensions are included in this formalism via the simple extension given

in problem (4.13).)

Boolean physical design problem. A variation on the problem (4.1) replaces the physical

parameter constraint 0 ≤ θj ≤ θmax
j

with the constraint θj ∈ {0, θmax
j

}, which limits each physical

parameter value to only two possible values. (This occurs when we are choosing between two

materials, such as silicon or air, in each of the patches in the structure we are designing.) We

refer to this modified problem as the Boolean physical design problem, as opposed to the continuous

physical design problem (4.1). It is clear that the optimal value of the Boolean physical design is no

smaller than p", the optimal value of the continuous physical design problem.

4.1.2 Approximate solutions

The problem (4.1) is not convex and generally hard to solve exactly [90]. It is, however, bi-convex,

since it is convex in z when θ is fixed, and convex in θ when z is fixed. Using variations on this

observation, researchers have developed a number of methods for approximately solving (4.1) via

heuristic means, such as alternating optimization over z and θ on the augmented Lagrangian of

this problem [133]. Other heuristics can be used to find approximate solutions of the Boolean

physical design problem. These methods produce what appear to be very good physical designs

when compared to previous hand-crafted designs or classical designs.

4.1.3 Performance bounds

Since the approximate solution methods used are local and therefore heuristic, the question arises:

how far are these approximate designs from an optimal design? In other words, how far is the

objective found by these methods from p"? Suppose, for example, that a heuristic method finds

a design with objective value 13.1. We do not know what the optimal objective p" is, other than

p" ≤ 13.1. Does there exist a design with objective value 10? Or 5? Or are these values of the

objective impossible, i.e., smaller than p"?

The method described in this chapter aims to answer this question. Specifically, we will compute

a provable lower bound L on the optimal objective value p" of (4.1). In our example above, our

method might compute the lower bound value L = 12.5. This means that no design can ever achieve
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an objective value smaller than 12.5. It also means that a design with an objective value of 13.1 is

not too far from optimal, since we would know that L = 12.5 ≤ p" ≤ 13.1.

A lower bound L on p" can be interpreted as an impossibility result, since it tells us that it is

impossible for a physical design to achieve an objective value less than L. We can also interpret L

as a performance bound. The lower bound L does not tell us what p" is; it just gives a lower limit

on what it can be. (An upper limit U can be found by using any heuristic method, as the final

objective value attained.)

We note that the lower bound L we find on p" also serves as a lower bound on the optimal value

of the Boolean physical design problem, since its optimal value is larger than or equal to p".

4.2 Performance bounds via Lagrange duality

In this section, we explain our lower bound method.

4.2.1 Lagrangian duality

We first rewrite (4.1) as

minimize 1
2 %W (z − ẑ)%22 + I(θ)

subject to (A+ diag(θ))z = b,
(4.2)

where I is an indicator function, i.e., I(θ) = 0 when 0 ≤ θ ≤ θmax and +∞ otherwise. The

Lagrangian of this problem is

L(z, θ, ν) = 1

2
%W (z − ẑ)%22 + I(θ) + νT ((A+ diag(θ))z − b), (4.3)

where ν ∈ Rn is a dual variable. The Lagrange dual function is

g(ν) = inf
θ,z

L(z, θ, ν).

(See [90, §5].) It is a basic and easily proved fact that for any ν, we have g(ν) ≤ p" (see [90, §5.1.3]).
In other words, g(ν) is a lower bound on p". While g(ν) always gives a lower bound on p", the

challenge for nonconvex problems such as (4.1) is to evaluate g(ν). We will see now that this can be

done for our problem (4.1).
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4.2.2 Evaluating the dual function

To evaluate g(ν) we must minimize L(z, θ, ν) over z and θ. Since for each θ, L(z, θ, ν) is convex

quadratic in z, we can analytically carry out the minimization over z. We have

g(ν) = inf
θ
inf
z

L(z, θ, ν)

= inf
θ

8
−1

2

;;W−1(A+ diag(θ))T ν −W 2ẑ)
;;2
2
− νT b+

1

2
%Wẑ%22 + I(θ)

9

= inf
0≤θ≤θmax

−1

2

;;W−1(A+ diag(θ))T ν −W 2ẑ)
;;2
2
− νT b+

1

2
%Wẑ%22 . (4.4)

We can see that this is true since the minimizer of the only terms depending on z,

argmin
z

8
1

2
%W (z − ẑ)%22 + νT (A+ diag(θ))z

9
,

can be found by taking the gradient and setting it to zero (which is necessary and sufficient by

convexity and differentiability). This gives that the minimizing z is

z = ẑ −W−2(A+ diag(θ))ν, (4.5)

which yields (4.4) when plugged in.

The expression in (4.4) is separable over each θi; it can be rewritten as

g(ν) = inf
0≤θ≤θmax

−1

2

n'

j=1

W−2
jj

1
(AT ν)j + νjθj −W 2

jj
ẑj
22 − νT b+

1

2
%Wẑ%22

=

n'

j=1

8
inf

0≤θj≤θmax
j

−1

2
W−2

jj

1
(AT ν)j + νjθj −W 2

jj
ẑj
22
9
− νT b+

1

2
%Wẑ%22

= −1

2

n'

j=1

W−2
jj

max
<1

aT
j
ν −W 2

jj
ẑj
22

,
1
aT
j
ν + νjθ

max
j

−W 2
jj
ẑj
22=− νT b+

1

2
%Wẑ%22 , (4.6)

where aT
j
is the jth row of A. In the last line, we use the basic fact that a scalar convex quadratic

function achieves its maximum over an interval at the interval’s boundary.

With this simple expression for the dual function, we can now generate lower bounds on p", by

simply evaluating it for any ν. We note that g is also the dual function of the Boolean physical

design problem.
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4.2.3 Dual optimization problem

It is natural to seek the best or largest lower bound on p", by choosing ν that maximizes our lower

bound. This leads to the dual problem (see [90, §5.2]),

maximize g(ν),

with variable ν. We denote the optimal value as d", which is the best lower bound on p" that can be

found from the Lagrange dual function. The dual problem is always a convex optimization problem

(see [90, §5.1.2]); to effectively use it, we need a way to tractably maximize g, which we have in

our case, since the dual problem can be expressed as the convex quadratically-constrained quadratic

program (QCQP)

maximize −(1/2)1T t− νT b+ (1/2) %Wẑ%22
subject to tj ≥ W−2

jj

1
aT
j
ν −W 2

jj
ẑj
22

, j = 1, . . . , n

tj ≥ W−2
jj

1
aT
j
ν + νjθ

max
j

−W 2
jj
ẑj
22

, j = 1, . . . , n,

(4.7)

with variables t and ν. This problem is easily solved and its optimal value, d", is a lower bound on

p".

The dual optimization problem (4.7) can be solved several ways, including via ADMM (which

can exploit the fact that all subproblems are quadratic; see [139]), interior point methods (see [90,

§11.1]), or by rewriting it as a second-order cone program (SOCP) (see [140]; this can also be

done automatically by modeling languages such as CVXPY [141]) and then using one of the many

available SOCP solvers, such as SCS [142,143], ECOS [144], or Gurobi [145]. We also note that the

dual problem does not have to be perfectly solved; we get a lower bound for any value of the dual

variable ν.

We used the Gurobi solver to solve a (sparse) program with n = 63001, which took approximately

8 minutes to solve on a two-core Intel Core i5 machine with 8GB of RAM. By further exploiting the

structure of the problem, giving good initializations, or by using less accurate methods when small

tolerances are not required, it is likely that these problems could be solved even more quickly, for

larger systems.

4.2.4 Initializations via Lagrange dual

The solution of the Lagrange dual problem can be used to suggest starting points in a heuristic or

local method for approximately solving (4.1).
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Initial structure. Let ν" be a solution of the dual problem (4.7). We can take as initial structure

θ0 which minimizes (4.4), i.e.,

θ0
j
∈ argmax

θj∈{0, θmax
j }

1
aT
j
ν" + ν"

j
θj −W 2

jj
ẑj
22

.

This choice of initial structure is feasible for (4.1) and, in fact, is feasible for the Boolean physical

design problem as well.

Initial field. One way to obtain an initial field is to simply solve the physics equation for θ0,

when the physics coefficient matrix is nonsingular. When it is singular, but the physics equation is

solvable, we compute z as the field that minimizes the objective, subject to the physics equation.

This gives a feasible field, but in some cases the resulting point is not very useful. For example when

b = 0, and the coefficient matrix is nonsingular, we obtain z0 = 0.

Another possibility is to find the minimizer of the Lagrangian with the given structure and an

optimal dual variable value, i.e.,

z0 = argmin
z

L(θ0, z, ν").

The value is already given in (4.5):

z0 = ẑ −W−2
1
A+ diag(θ0)

2T
ν".

This initial field is not feasible, i.e., it does not satisfy the physics equation, but it seems to be a

very good initial choice for heuristic algorithms.

4.3 Multi-scenario design

In this section we mention an extension of our basic problem (4.1), in which we wish to design one

physical structure that gives reasonable performance in N different scenarios. The scenarios can

represent different operating temperatures, different frequencies, or different modes of excitation.

We will index the scenarios by the superscript i, with i = 1, . . . , N . Each scenario can have a

different weight matrix W i, a different target field ẑi, a different physics matrix Ai, and a different

excitation bi. We have only one physical design variable θ, and N different field responses, zi,

i = 1, . . . , N . We take as our overall objective the sum (or average) of the objectives under the

scenarios. This leads to the problem

minimize 1
2

3
N

i=1

;;W i(zi − ẑi)
;;2
2

subject to (Ai + diag(θ))zi = bi, i = 1, . . . , N

0 ≤ θ ≤ θmax,

(4.8)
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with variables θ (the structure) and zi (the fields under the N different scenarios).

Our bounding method easily generalizes to this multi-scenario physical design problem.

Dual optimization problem. As before, define (ai
j
)T to be the jth row of Ai and allow νi to be

the Lagrange multiplier for the ith constraint, then the new dual problem is,

maximize −(1/2)1T t−
3

N

i=1(ν
i)T (bi) + (1/2)

3
N

i=1

;;W iẑi
;;2
2

subject to tj ≥
3

N

i=1(W
i

jj
)−2

1
(ai

j
)T νi − (W i

jj
)2ẑi

j

22
, j = 1, . . . , n

tj ≥
3

N

i=1(W
i

jj
)−2

1
(ai

j
)T νi + νi

j
θmax
j

− (W i

jj
)2ẑi

j

22
, j = 1, . . . , n,

(4.9)

which is also a convex QCQP. This new dual optimization problem can be derived in a similar way

to the construction of §4.2.

Initial structure and fields. Similar initializations hold for (4.8) as do for (4.1). We can find an

initial θ0 given by

θ0
j
∈ argmax

θj∈{0, θmax
j }

4
'

i

(W i

jj
)−2

1
(ai

j
)T (νi)" + (νi)"

j
θj − (W i

jj
)2ẑi

j

22
5
, (4.10)

while we can find feasible initial fields by solving the physics equations for each scenario, or as the

minimizer of the Lagrangian,

(zi)0 = ẑi − (W i)−2
1
Ai + diag(θ0)

2T
(νi)", (4.11)

for i = 1, . . . , N , which gives infeasible fields (often, however, these fields are good initializations).

4.4 Numerical example

4.4.1 Physics and discretization

We begin with Helmholtz’s equation in two dimensions,

∇2f(x, y) +

8
ω

c(x, y)

92

f(x, y) = 0, (4.12)

where f : R2 → R is a function representing the wave’s amplitude, ∇2 = ∂2
x
+∂2

y
is the Laplacian in

two dimensions, ω ∈ R+ is the angular frequency of the wave, and c : R2 → R+ is the speed of the

wave in the material at position (x, y), which we can change by an appropriate choice of material.

For this problem, we will allow the choice of any material that has a propagation speed between

0 < cmin(x, y) ≤ c(x, y) ≤ cmax(x, y), such that f is close to f̂ , some desired field.
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Throughout, we will also assume Dirichlet boundary conditions for convenience (that is, f(x, y) =

0, whenever (x, y) is on the boundary of the domain), though any other boundary conditions could

be similarly used with this method.

We discretize each of c, f , and∇2 in equation (4.12) using a simple finite-difference approximation

over an equally-spaced rectilinear grid. (More sophisticated discretization methods would also work

with our method.) Specifically, let (xi, yi) for i = 1, . . . , n be the discretized points of the grid, with

separation distance h (e.g., yi+1 − yi = xi+1 − xi = h). We then let z and ẑ, both in Rn, be the

discretization of f and f̂ , respectively, over the grid,

zi = f(xi, yi), ẑi = f̂(xi, yi).

Using this discretization, we can approximate the second derivative of f at the grid points as,

∂2
x
f(xi, yi) ≈

f(xi + h, yi)− 2f(xi, yi) + f(xi − h, yi)

h2
= ∆xz,

for some matrix ∆x, and similarly for ∂2
y
, whose finite approximation we will call ∆y. We can then

define a complete approximate Laplacian as the sum of the two matrices,

∆ = ∆x +∆y.

We also similarly discretize c(x, y) as

θi =
1

c(xi, yi)2
,

where θ ∈ Rn. The constraints on c(x, y) become

θmin =
1

cmax(xi, yi)2
≤ θi ≤

1

cmin(xi, yi)2
= θmax.

We can now write the fully-discretized form of Helmholtz’s equation as

(∆+ ω2 diag(θ))z = 0

or, equivalently, 8
1

ω2
∆+ diag(θ)

9
z = 0.

So the final problem is, after replacing θ with θ − θmin,

minimize 1
2 %W (z − ẑ)%22

subject to
1
(1/ω2)∆+ diag(θmin) + diag(θ)

2
z = 0

0 ≤ θ ≤ θmax − θmin.
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Figure 4.1: The three target resonator regions.

This has the form of problem (4.1), with

A =
1

ω2
∆+ diag(θmin), b = 0.

Note that the design we are looking for—one that supports non-vanishing modes at each frequency—

will, in general, have a singular (or indeterminate) physics equation. More specifically, the final

design’s physics equations will each have a linear set of solutions, from which we pick the one that

minimizes the least squares residual in the objective.

4.4.2 Problem data

In this example, we will design a 2D resonator with modes that are localized in the boxes found in

figure 4.1, at each of three specified frequencies. More specifically, let Si be the indices at frequency

i corresponding to the boxes shown in figure 4.1. We define the target field for frequency i as

ẑi
j
=

.
/

0
1, j ∈ Si

0, j ∕∈ Si.

We set the weights within the box containing the mode to be one and set those outside the box to

be larger:

W i

jj
=

.
/

0
1, j ∈ Si

5, j ∕∈ Si.

We specify three frequencies (i.e., N = 3),

ω = (30π, 40π, 50π),
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at which to generate the specified modes by picking the propagation speed of the wave at each

discretization point of the domain. We constrain the allowed propagation speed by picking

θmin
j

= 1, θmax
j

= 2, j = 1, . . . , n.

Our discretization uses a 251× 251 grid, so n = 2512 = 63001, with h = 1/n.

4.4.3 Physical design

We use ADMM to approximately solve the physical design problem, as in [133], using penalty

parameter ρ = 100. We initialized the method using the feasible structure and fields from §4.4.4,
though similar designs are achieved with simple initializations like θ = θmin and zi = 0, for i = 1, 2, 3.

We stop the algorithm when the physics constraint residual norm drops below a fixed tolerance of

10−2. The resulting locally optimized design is shown in figure 4.2 and the associated fields are

shown in figure 4.3. In particular, after local optimization, we receive some θ and z with

θmin ≤ θ ≤ θmax, %(A+ diag(θ))z − b%2 ≤ 10−2,

and then evaluate

p =
1

2

3'

i=1

;;W i(zi − ẑi)
;;2
2
,

which gives p = 5145.

Our non-optimized implementation required around 1.5 seconds per iteration and took 332 it-

erations to converge to the specified tolerance, so the total physical design time is a bit under 9

minutes on a 2015 2.9GHz dual core MacBook Pro. Our implementation used a sparse-direct solver;

an iterative CG solver with warm-start would have been much faster.

4.4.4 Dual problem

We solved problem (4.9) using the Gurobi [145] SOCP solver and the JuMP [146] mathematical

modeling language for Julia [147]. Gurobi required under ten minutes to solve the dual problem,

about the same time required by the physical design. This time, too, could be very much shortened;

for example, we do not need to solve the dual problem to the high accuracy that Gurobi delivers.

The optimal dual value found is d" = 4733, with the initial design and fields suggested by the

optimal dual solution shown in figure 4.2 and figure 4.3, respectively. This tells us that

4733 = d" ≤ p" ≤ p = 5145,

which implies that our physical design objective value is no more than (5145− 4733)/4733 ≈ 8.7%
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Figure 4.2: Left. Initial design suggested by the dual solution. Right. Optimized physical design.
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Figure 4.3: Top row. Fields suggested by solution to the dual problem. Bottom row. Fields in
ADMM physical design. Columns show the three frequencies.
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suboptimal. (We strongly suspect that p" is closer to our design’s value, 5145, than the lower bound,

4733.)

4.5 Further extensions

There are several straightforward extensions of the above problem, which may yield useful results in

specific circumstances. All of these problems have analytic forms for their Lagrange dual functions,

and all forms generalize easily to their multi-frequency counterparts. Additionally, we explicitly

derive the dual functions for some extensions which require a little more care.

Equality-constrained parameters. Sometimes, it might be the case that a single design param-

eter might control several points in the domain of z—for example, in the case of Maxwell’s equations

in two and three dimensions (see the appendix for more details), or when the domain’s grid size is

much smaller than the smallest features that can be constructed.

Let Sk ⊂ {1, . . . , n} for k = 1, . . . ,m be a partition of indices, {1, . . . , n}. In other words, we

want Sk for k = 1, . . . ,m to satisfy,
m>

k=1

Sk = {1, . . . , n}

and Sk ∩ Sl = ∅ whenever k ∕= l. These sets Sk will indicate the sets of indices which are con-

strained to be equal—conversely, indices that are not constrained to be equal to any other indices

are represented by singleton sets.

We can then write the new optimization problem as

minimize 1
2 %W (z − ẑ)%22

subject to (A+ diag(θ))z = b

θi = θj , for all i, j ∈ Sk, k = 1, . . . ,m

0 ≤ θ ≤ θmax.

(4.13)

To compute the Lagrange dual, let I ′ be an indicator function with I ′(θ) = 0 whenever 0 ≤ θ ≤
θmax and θi = θj for all i, j ∈ Sk for k = 1, . . . ,m. Otherwise, I ′(θ) = +∞. We can write the new

problem as problem (4.2) with the same Lagrangian as the one given in (4.3), replacing I with I ′ in

both expressions.

Minimization over z is identical to (4.4) and minimization over θ is similar minus the fact that for

each k, the indices found in Sk are all constrained to be equal. Since the sum of convex quadratics

is still a convex quadratic and, as before, since convex quadratics achieve minima at the boundary
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of an interval, we have

g(ν) = −1

2

m'

k=1

max

6
'

j∈Sk

W−2
jj

1
aT
j
ν −W 2

jj
ẑj
22

,
'

j∈Sk

W−2
jj

1
aT
j
ν + νjθ

max
j

−W 2
jj
ẑj
22
7

− νT b+
1

2
%Wẑ%22 ,

as the final Lagrange dual function. The corresponding dual problem can be written as a convex

QCQP.

Field constraints. In the case where (4.1) has field constraints, i.e.,

minimize 1
2 %W (z − ẑ)%22

subject to (A+ diag(θ))z = b

(zj − hj)
2 ≤ (zmax

j
)2, j = 1, . . . , n

0 ≤ θ ≤ θmax,

for some h ∈ Rn, the construction also parallels the one given in §4.2. The resulting dual optimiza-

tion problem, in comparison to problem (4.7), cannot be written as a QCQP—it is, instead, a more

general SOCP.

Regularizers. It is also possible to add a separable regularization term for θ, the parametrization

of the device; for example, in the case where we would want to bias specific θj towards either 0 or

θmax
j

.

If we have a family of concave functions, rj : R → R such that our regularizer can be written as

a function of the form

θ 5→
n'

j=1

rj(θj),

(one such example is a linear function of θ), then the problem becomes

minimize 1
2 %W (z − ẑ)%22 +

3
n

j=1 rj(θj)

subject to (A+ diag(θ))z = b

0 ≤ θ ≤ θmax.

By using the fact that rj is concave and therefore achieves a minimum over an interval at the

boundary of the interval, it is possible to derive a bound that parallels (4.6).
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Parameter perturbations. In some cases (e.g., when considering temperature perturbations),

it might be very natural to have a physical constraint of the form

(A+D diag(θ))z = b,

where D ∈ Rn×n is a diagonal matrix that is not necessarily invertible. In other words, our new

problem is

minimize 1
2 %W (z − ẑ)%22

subject to (A+D diag(θ))z = b

0 ≤ θ ≤ θmax.

Directly applying the method from §4.2 yields a similar explicit form for g as given in (4.6).

Indeterminate eigenvalue. In the case where we want z to be a mode of the device with some

unspecified eigenvalue λ with upper and lower limits λmin ≤ λ ≤ λmax, we can write the problem as

minimize 1
2 %W (z − ẑ)%22

subject to (A+ λI + diag(θ))z = b

λmin ≤ λ ≤ λmax

0 ≤ θ ≤ θmax.

(4.14)

To construct the dual, note that the Lagrangian of this problem is similar to the Lagrangian of

problem (4.1),

L(z, θ,λ, ν) = 1

2
%W (z − ẑ)%22 + I(θ) + νT ((A+ λI + diag(θ))z − b).

We will define the partial Lagrangian, Lp to be the infimum of L with respect to z and θ, leaving λ

and ν as free variables. The solution to the partial minimization of L is given in (4.6),

Lp(λ, ν) = inf
z,θ

L(z, θ,λ, ν)

= −1

2

n'

j=1

W−2
jj

max
θj∈{0,θmax

j }

1
aT
j
ν + (λ+ θj)νj −W 2

jj
ẑj
22 − νT b+

1

2
%Wẑ%22 .

As Lp(λ, ν) is a concave in λ, it achieves its minimum at the boundaries of the domain of λ. So,

since

g(ν) = inf
λmin≤λ≤λmax

Lp(λ, ν),

we can write,

g(ν) = min
λ∈{λmin,λmax}

Lp(λ, ν)
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which is the minimum over a (finite) number of concave functions. The corresponding dual problem

can then be expressed as a convex QCQP.

4.6 Conclusion

This chapter has derived a set of lower bounds for a general class of physical design problems, making

it possible to give (a) an easily-computable certificate that certain objectives cannot be physically

achieved and (b) a bound on how suboptimal (relative to the global optimum) a given design could

be. Additionally, as a side-effect of computing this lower bound, we also receive an initialization

for any heuristic approach we might take for approximately solving (4.1) or its multi-frequency

version (4.8).

Additionally, it seems feasible to obtain asymptotic bounds via this approach, since the opti-

mization problem in (4.7) can easily be written in an unconstrained form. In other words, picking

any ν ∈ Rn will yield some lower bound, and an appropriate choice might yield nice asymptotic

results.

4.7 Appendix

4.7.1 Optimization using ADMM

We can approximately minimize (4.1) via the alternating direction method of multipliers, as in [133].

The method proceeds by forming the augmented Lagrangian of (4.1) and minimizing over each

available variable, before updating a dual variable after each iteration.

ADMM iteration. We form the augmented lagrangian of problem (4.1) as in [148].

Laug(z, θ; ν) =
1

2
%W (z − ẑ)%22 +

ρ

2
%(A+ diag(θ))z − b+ ν%22 ,

where ρ > 0 is a penalty parameter we set. Minimizing over each of z and θ (with the constraint

0 ≤ θ ≤ θmax) yields the following update rules

z(k+1) = (W 2 + ρA(θ(k))TA(θ(k)))−1(W 2ẑ + ρA(θ(k))T (b− ν(k)))

θ
(k+1)
i

= S((bi − aT
i
z(k+1) − ν

(k)
i

)/z
(k+1)
i

, θmax
i

), i = 1, . . . , n

ν(k+1) = ν(k) +A(θ(k+1))z(k+1) − b,

where we have defined A(θ) = A+ diag(θ) and S(x, u) = min{max{x, 0}, u} is the clamp function

with upper limit, u, and we arbitrarily define S(x/0, u) = 0 for any x, though any value in [0, u]

would similarly suffice.
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It can be shown that, if a feasible field exists for some θ, then, as k → ∞, the iterates converge to

a locally-optimal design θ and feasible field z, for an appropriately large choice of penalty parameter

ρ [149]. In practice, we find that ADMM is fairly robust and converges for a large range of values

of ρ, though some choices appear to increase convergence speed.

4.7.2 Formulations of physical problems

Here, we describe ways of mapping the photonic inverse design problem into extensions of prob-

lem (4.1).

Maxwell’s equations in three dimensions. Ampere’s law and Faraday’s law in Maxwell’s

equations, for a specific frequency ω, can be written as

∇×H = −iωεE + J (4.15)

∇× E = iωµH, (4.16)

over some compact region of space Ω ⊂ R3, with appropriate boundary conditions for H and E.

Here, E,H, J : Ω → C3 are the electric field, magnetic field, and the current density, respectively,

ε, µ : Ω → R+ are the permittivity and permeability of the space (which we can often control by an

appropriate choice of material), respectively. The bold i—to avoid confusion with the index i—is

the imaginary unit with i2 = −1. We will also assume that we can choose any permittivity and

permeability that satisfy εmin(x) ≤ ε(x) ≤ εmax(x) and µmin(x) ≤ µ(x) ≤ µmax(x) at each point of

the region x ∈ Ω.

Constant permeability

In many physical design problems, µ is also a constant that is independent of our material choice

(e.g., in the case where we are choosing between silicon or air, under small magnetic field) and

constant through space (i.e., µ(x) = µc for x ∈ Ω). Assuming this is true, we can write

∇×∇× E = iωµc∇×H = ω2µεE + iωµcJ,

by taking the curl of (4.16) and plugging in (4.15). Rearranging gives,

−∇×∇× E + ω2µcεE = −iωµcJ. (4.17)

All we require is a discretization of E, ε, J , and the linear operator −(∇ × ∇ × ·). There are

several standard ways of doing this (e.g., the Yee lattice, see [150, §4.6.4]), though any method

which discretizes the linear operator in the space will suffice. Let z ∈ C3n be the optimization

variable corresponding to the discretized field with zi ∈ Cn being the field along each of the three
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axes, i = 1, 2, 3. Then, we can rewrite and discretize (4.17) as

1
−∇×∇×! "# $

A

+ω2µcε
2

E!"#$
z

= −iωµcJ! "# $
b

.

Here, each of A ∈ C3n×3n and b ∈ C3n are the corresponding discretizations of the variables they

are below.

The next question is: how can we deal with the scalar permittivity term? One simple way is to

allow θ ∈ C3n—which roughly corresponds to the discretized version of ω2µcε—to have a component

along each axis, which we will call θi for i = 1, 2, 3, and to then constrain all axes to be equal—i.e.,

θ1 = θ2 = θ3. Using this idea, we can then write diag(θ)z, as a discretization of ω2µcεE. Note

that, without the equality constraint, θ would be allowed to vary arbitrarily along each axis.

Finally, we set θmax to be the largest possible value of ω2µcε at each point in the discretization

(with a similar case for θmin), which lets us write the final program as a special case of (4.13),

minimize 1
2 %W (z − ẑ)%22

subject to (A+ diag(θ))z = b

θ1 = θ2 = θ3,

θmin ≤ θi ≤ θmax, i = 1, 2, 3.

Arbitrary permeability

In the case where we are also allowed to vary the permittivity throughout the space, we can discretize

the equations in a similar way. The resulting system will have roughly double the size, but is still—

usually, depending on the choice of discretization—relatively sparse.

First, we can write equations (4.15) and (4.16) in the suggestive form

%
∇× 0

0 ∇×

&%
E

H

&
+ iω

%
εI 0

0 −µI

&%
E

H

&
=

%
J

0

&
, (4.18)

where I ∈ R3×3 is the identity matrix. From here, we can perform a similar trick as in §4.7.2, by
rewriting and discretizing (4.18) in the following way:

4
− iω−1

%
∇× 0

0 ∇×

&

! "# $
A

+

%
εI 0

0 −µI

&5%
E

H

&

!"# $
z

= −iω−1

%
J

0

&

! "# $
b

,

where A ∈ C6n×6n, z ∈ C6n, and b ∈ C6n are the discretized versions of the expressions above each.

We will write zi
E

for i = 1, 2, 3 to be the ith component of the discretization of the E-field, with a

similar definition for zi
H
.
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As before, let θi
E
∈ Rn and θi

H
∈ Rn be the discretization of the permittivity and permeability,

respectively, along each axis i = 1, 2, 3, with θ being the concatenation of each component and field

over all points in the discretization. To ensure that the permittivity and permeability all remain

scalar quantities, we simply constrain each entry of θ to be equal along all axes at each discretization

point, which yields a problem which is a special case of (4.13):

minimize 1
2 %W (z − ẑ)%22

subject to (A+ diag(θ))z = b

θ1
E
= θ2

E
= θ3

E
,

θ1
H

= θ2
H

= θ3
H
,

θmin
E

≤ θi
E
≤ θmax

E
, i = 1, 2, 3,

θmin
H

≤ θi
H

≤ θmax
H

, i = 1, 2, 3,

where θmin
E

is defined to be the minimum value of ε at each discretization point with a similar

definition for θmax
E

, θmax
H

, θmin
H

.



Chapter 5

Computational bounds for

efficiency metrics

This chapter is adapted from an in-progress manuscript, coauthored with Theo Diamandis, Jelena

Vučković, and Stephen Boyd.

Introduction

Traditionally, photonic devices were designed by a scientist or engineer (whom we will call a de-

signer) for a specific application. This designer would piece together components from a library

to create a device for the desired task. While effective in practice, this process is time consuming,

possibly irrelevant to the final application of the design itself, and may produce designs that are

far from optimal. In an alternative approach to constructing devices, a designer specifies what they

want while forfeiting control of how the device is constructed to an optimization algorithm. This

optimization algorithm then attempts to find a device which maximizes the designer-specified per-

formance metric—a mathematical objective function that outputs a number representing how well

the design matches the desired specifications. In photonics, this approach is called “inverse design.”

Inverse design. Photonic inverse design [4, 13, 14, 16, 115, 151] has been extremely successful in

finding photonic chips designs with very good practical performance when compared to designs

generated by traditional methods. Still, there is an outstanding question of whether there exist

designs with much better performance. For simple devices, such as spherical lenses, a designer can

find the optimal design with basic algebra and ray optics. However, for more complicated devices,

finding the optimal design with respect to some performance metric is an open research problem.

As a result, designs are usually found using heuristic methods in practice [1, 23].

69
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Bounds. Given a design generated using a heuristic, it is natural to wonder how much better one

could have done. To answer, we need to determine a design’s suboptimality with respect to some

performance metric. Recently, there has been a large amount of work which attempts to answer this

question for a variety of metrics, including mode volume [99], free space concentration [152], integral

overlap [85,88], among many others [3, 81–84,87,153,154].

This chapter. In this chapter, we extend the current bound formulations to include objective

functions which can be expressed as the ratio of two quadratic functions of the field. This type of

objective includes a number of efficiency metrics such as the focusing efficiency, the mode purity,

among many others. We show a numerical example of these bounds and also provide a set of simple

open source packages that can be used to compute bounds for a number of inverse design problems

whose objectives can be phrased as quadratics or the ratio of quadratics.

5.1 The problem of maximizing efficiency

In the general photonic design problem, a designer must design a device that maximizes some

objective function f of the fields z by choosing a range of possible permittivities θ of a device at

each point in space. (For example, this might mean that the designer is only able to choose some

permittivity between that of air or silicon at each point in the design domain.)

We will assume that the fields z must satisfy the electromagnetic wave equation, which can be

written as

Az + diag(θ)z = b, (5.1)

for some linear operator A and excitation b. In general, we will work with a discretization of the

fields and permittivities, such that θ, z, b ∈ Rn are represented as n-vectors, that f : Rn → R is a

function mapping z to a real number, while A ∈ Rn×n is an n × n matrix. We have assumed that

A, z, and b are real in this case, but the complex case can be reduced to the real one by separating

it into its real and imaginary parts. (We will see an explicit example of how to do this later in this

chapter.)

Because the designer is only allowed to choose materials whose parameters range within some

interval, we will write θmin
i

≤ θ ≤ θmax
i

for i = 1, . . . , n. Without loss of generality, we will assume

that θmax = −θmin = 1 since (5.1) can always be rescaled such that this is true. (See, e.g., [1, §2.2]
for more details.) The general optimization problem the designer wishes to solve is then:

maximize f(z)

subject to Az + diag(θ)z = b

− 1 ≤ θ ≤ 1.

(5.2)



CHAPTER 5. COMPUTATIONAL BOUNDS FOR EFFICIENCY METRICS 71

Here the variables are the fields z ∈ Rn and the permittivities θ ∈ Rn, while the problem data is the

matrix A ∈ Rn×n and the excitation b ∈ Rn. Note that this problem, as stated, is NP-hard [1, §2.3],
so finding its optimal value, which we will call p", is likely to be computationally infeasible except

for very small problems.

Efficiency metrics. A common problem in photonic design (and, more generally, in physical

design) is the problem of maximizing an efficiency metric. We say an objective is an efficiency

metric whenever, for any z ∈ dom f we have that

0 ≤ f(z) ≤ 1, (5.3)

or, in other words, that the objective value for a feasible field z is always a number between 0 and

1.

Ratio of quadratics. In many important cases in photonic design, the objective function can be

written as the ratio of two quadratics in z, i.e.,

f(z) =
zTPz + 2pT z + r

zTQz + 2qT z + s
, (5.4)

where P,Q ∈ Sn are two symmetric matrices, while p, q ∈ Rn and r, s ∈ R, whenever zTQz +

2qT z + s > 0 and is −∞ otherwise. Note that this function f is, in general, nonconvex. (We will

see some examples of such objective functions soon.) In order for f to be an efficiency metric (5.3),

the numerator and denominator must satisfy

0 ≤ zTPz + 2pT z + r ≤ zTQz + 2qT z + s

for all z ∈ Rn. By minimizing over z, this is true whenever

0 ≤
%
P p

pT r

&
≤

%
Q q

qT s

&
, (5.5)

where the inequalities are semidefinite inequalities [90, §2.4.1]. From (5.5), we then require that P

and Q satisfy 0 ≤ P ≤ Q, while r and s must satisfy 0 ≤ r ≤ s.
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Optimization problem. The resulting optimization problem, when f is the ratio of two quadrat-

ics is:

maximize
zTPz + 2pT z + r

zTQz + 2qT z + s

subject to Az + diag(θ)z = b

− 1 ≤ θ ≤ 1.

(5.6)

The variables in this problem are the fields z ∈ Rn and the design parameters θ ∈ Rn, while the

data are the matrices A ∈ Rn×n and P,Q ∈ Sn, the vectors p, q ∈ Rn, and the scalars r, s ∈ R.

From the previous discussion, if the objective is an efficiency metric, then the optimal values of (5.6),

p", will also satisfy 0 ≤ p" ≤ 1. Finding an upper bound to this optimal value p" would then give

us an upper bound on the maximal efficiency of the best possible design.

5.1.1 Example efficiency metrics

Normalized overlap. One important special case of an efficiency metric is sometimes known as

the normalized overlap. The normalized overlap is defined as

f(z) =
(cT z)2

%z%22
,

where c ∈ Rn is a normalized vector with %c%22 = 1. This is a special case of (5.4) where P = ccT ,

Q = I, and p = q = 0, while r = s = 0.

It is easy to verify that this is indeed an efficiency metric since f(z) ≥ 0 as it is the ratio of two

nonnegative quantities, while

f(z) =
(cT z)2

%z%22
≤ %c%22%z%22

%z%22
= %c%22 = 1,

where the first inequality follows from Cauchy–Schwarz [94, §3.4]. Whenever c is a mode of the

system, this objective is sometimes called the normalized mode overlap, or the mode purity, and

can be interpreted as the fraction of power that is coupled into the mode specified by c, compared

to the total fraction of power going to all possible output modes.

In the case we wish to measure the normalized overlap only over some region specified by indices

S ⊆ {1, . . . , n}, we can instead write

f(z) =
(cTRz)2

%Rz%22
,

where the matrix R ∈ Rn×n is a diagonal matrix with diagonal entries

Rii =

.
/

0
1 i ∈ S

0 otherwise,
(5.7)
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for i = 1, . . . , n. The resulting objective can be written in as the special case of (5.4) where

P = RccTR and Q = R2 = R, while q = p = 0 and r = s = 0, and is also easily shown to be an

efficiency metric.

Focusing efficiency. While there are many ways of specifying the focusing efficiency of a lens,

one simple approach is to define it as the ratio of the sum of intensities over two regions. This can

be written as:

f(z) =
%R′z%22
%Rz%22

,

where the matrices R,R′ ∈ Rn×n are defined as

Rii =

.
/

0
1 i ∈ S

0 otherwise,
R′

ii
=

.
/

0
1 i ∈ S′

0 otherwise.

Here, S′ ⊆ S ⊆ {1, . . . , n} are sets of indices over which we sum the square of the field. In this case,

we call S the focusing plane and S′ the focusing region or focal spot, which is usually chosen to be

approximately the full width at half maximum (FWHM) of the intensity along S.

This metric is nonnegative as it is the ratio of two nonnegative functions, and satisfies f(z) ≤ 1

as S′ ⊆ S. We can write this as the special case of (5.4) where P = R′ and Q = R, while p = q = 0

and r = s = 0.

5.2 Homogenization and bounds

In this section, we will show a transformation of problem (5.6) which results in a quadratic objective

with an additional quadratic constraint, by introducing a new variable. We will then show how

to construct basic bounds using procedures similar to those of [1, 85, 88] and show a few simple

extensions.

5.2.1 Homogenized problem

The main difficulty of constructing bounds for (5.6) is that the fractional objective is difficult to

deal with. We will first give a ‘heuristic’ derivation and show that it is always an upper bound to

the original problem. We also show that the converse is true: this new problem is equivalent to the

original when A+ diag(θ) is invertible for all −1 ≤ θ ≤ 1.

The main idea behind this method is to dynamically scale the input excitation, b, by some factor

α ∈ R, such that the denominator is always equal to 1. To do this, we replace equation (5.1) with

one where the input b is scaled, to get

Ay + diag(θ)y = αb.



CHAPTER 5. COMPUTATIONAL BOUNDS FOR EFFICIENCY METRICS 74

Here y is a new variable we will call the scaled field as we can write z = y/α. Plugging this into the

objective, assuming that z is feasible, we find that

f(z) = f(y/α) =
(1/α)2yTPy + 2(1/α)pT y + r

(1/α)2yTQy + 2(1/α)qT y + s
=

yTPy + 2αpT y + α2r

yTQy + 2αqT y + α2s
.

We will then constrain the denominator to equal 1, which results in the homogenized problem

maximize yTPy + 2αpT y + α2r

subject to yTQy + 2αqT y + α2s = 1

Ay + diag(θ)y = αb

− 1 ≤ θ ≤ 1, α ≥ 0.

(5.8)

The variables in this problem are the scaled field y ∈ Rn and the scaling factor α ∈ R, while the

problem data is the same as that of the original problem (5.6).

Upper bound. We will now show that this new homogenized problem (5.8) is an upper bound to

the original problem. More specifically we will show that every feasible field z and design parameters

θ for (5.6) has a feasible scaled field y, scaling factor α > 0, using the same design parameters θ,

with the same objective value.

First, note that z is feasible for (5.6), by definition, if f(z) > −∞, i.e., if z satisfies

zTQz + 2qT z + s > 0, (A+ diag(θ))z = b,

for some −1 ≤ θ ≤ 1. Based on this choice of z, we will set

α =
1?

zTQz + 2qT z + s
, y = αz,

and show that this choice of α and y satisfies the constraints of (5.8) with the same objective value.

Plugging this value into the first constraint of (5.8), we see that

yTQy + 2αqT y + α2s = α2(zTQz + 2qT z + s) = 1,

while

(A+ diag(θ))y = α(A+ diag(θ))z = αb.

Finally, the objective satisfies:

yTPy + 2αpT y + α2r = α2(zTPz + 2pT z + r) =
zTPz + 2pT z + r

zTQz + 2qT z + s
= f(z),
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so the objective value for y and α for problem (5.8) is the same as f(z), the objective value for (5.6)

with field z.

Equivalence. We will show that, in fact, problem (5.8) and problem (5.6) are equivalent in the

special case where A+diag(θ) is invertible for any choice of −1 ≤ θ ≤ 1. (We note that the problems

are equivalent even in the case where the physics equation is not always invertible, but invertibility

usually holds in practice.) We’ve shown that every feasible field z and design parameters θ have a

corresponding scaled fields y, scaling parameter α (with the same design parameters θ). We will

now show the converse: every scaled field y with scaling parameter α that is feasible for (5.8) has

some corresponding field z for (5.6) with the same objective value. We break this up into two cases,

one in which α ∕= 0 and one in which α = 0.

Given α ∕= 0 and any y satisfying the constraints of (5.8), we set z = y/α. This field z satisfies

the physics constraint with the same design parameters θ as

(A+ diag(θ))z =
1

α
(A+ diag(θ)) y =

1

α
(αb) = b.

On the other hand, the objective value for this choice of z is

f(z) = f(y/α) =
yTPy + 2αpT y + α2r

yTQy + 2αqT y + α2s
= yTPy + 2αpT y + α2r.

So this z is also feasible with design parameters θ and the same objective value.

On the other hand, we will show that α = 0 is never feasible for (5.8) for any choice of −1 ≤ θ ≤ 1.

If α = 0, then (A+ diag(θ))y = αb = 0. Since A+ diag(θ) is invertible by assumption, then y = 0.

This implies that

yTQy + 2αqT y + α2s = 0 ∕= 1.

So, given any θ and α = 0, there is no scaled field y that is feasible for (5.8). This shows that the

problems are equivalent as any feasible point for one is feasible in the other, with the same objective

value.

5.2.2 Semidefinite relaxation

In general, problem (5.8) is still nonconvex and likely computationally difficult to solve. On the

other hand, we can give a convex relaxation of the problem, yielding a new problem whose optimal

value is guaranteed to be at least as large as that of (5.8) while also being computationally tractable.
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Variable elimination. As in [1, 2], we can eliminate the design variable θ from problem (5.8),

giving the following equivalent problem over only the scaled field y and scaling parameter α,

maximize yTPy + 2αpT y + α2r

subject to yTQy + 2αqT y + α2s = 1

(aT
i
y − αbi)

2 ≤ y2
i
, i = 1, . . . , n.

(5.9)

with variables y ∈ Rn and α ∈ R. Here, aT
i
denotes the ith row of the matrix A, and the problem

data is otherwise identical to that of (5.8). Additionally, we note that this problem is equivalent

to (5.8) by the same argument as that of [1] and therefore to (5.6).

Rewriting and relaxation. The new problem (5.9) is a nonconvex quadratically constrained

quadratic program (QCQP). We can write (5.9) in a slightly more compact form:

maximize xT P̄ x

subject to xT Q̄x = 1

xT Āix ≤ 0, i = 1, . . . , n

(5.10)

Here, the variable is x = (y,α) ∈ Rn+1, while the problem data are the matrices:

P̄ =

%
P p

pT r

&
, Q̄ =

%
Q q

qT s

&
, Āi =

%
aia

T

i
− eie

T

i
−biai

−bia
T

i
b2
i

&
, i = 1, . . . , n.

Using this rewritten problem, we can then form a semidefinite relaxation in the following way:

maximize tr(P̄X)

subject to tr(Q̄X) = 1

tr(ĀiX) ≤ 0, i = 1, . . . , n

X ≥ 0,

(5.11)

where we are maximizing over the variable X ∈ Sn. We will call d" the optimal value of this problem.

Problem (5.11) is a relaxation of (5.10) as any feasible point x ∈ Rn for (5.10) has a feasible point

X = xxT ≥ 0 for (5.11), as

tr(Q̄X) = tr(Q̄xxT ) = xT Q̄x = 1,

with the same objective value, tr(P̄X) = xT P̄ x. This implies that the optimal objective value

of (5.6), p" is never larger than the optimal objective value of (5.11); i.e., we always have p" ≤ d".
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Properties. There are several interesting basic properties of the relaxation of problem (5.11).

First, since P̄ ≥ 0 by assumption (5.5), then d" ≥ 0 since we know that, for any feasible X,

d" ≥ tr(P̄X) ≥ 0.

Since we also know from (5.5) that P̄ ≤ Q̄, then, for any optimal X" ≥ 0, we have

d" = tr(P̄X") ≤ tr(Q̄X") = 1.

This implies that

0 ≤ p" ≤ d" ≤ 1,

so d" can always be interpreted as a percentage upper bound of p", as expected. Additionally, given

any X ≥ 0 with tr(ĀiX) ≤ 0 for i = 1, . . . , n, and tr(Q̄X) > 0, then

X0 =
1

tr(Q̄X)
X

is a feasible point for problem (5.11).

Since we know that P̄ ≤ Q̄, then the equality constraint tr(Q̄X) = 1, in problem (5.11) can be

relaxed to tr(Q̄X) ≤ 1, with the same optimal objective value. Additionally, if we find a solution

X" whose rank is 1, then X" = xxT for some x and therefore we have that x = (y,α) is a solution to

the homogenized problem (5.8), which is easily turned into a solution of the original problem (5.6)

by setting z = y/α and θ = (aT
i
z − bi)/zi when zi ∕= 0 and 0 otherwise.

Dual problem. The matrices Āi for i = 1, . . . , n, Q̄, and P̄ are sometimes chordally-sparse [98].

This structure can often be exploited to more quickly solve for the optimal value of (5.11) by

considering the dual problem instead. Applying semidefinite duality [90, §5.9] to problem (5.11)

gives

minimize λn+1

subject to

n'

i=1

λiĀi + λn+1Q̄ ≥ P̄

λ ≥ 0,

(5.12)

where λ ∈ Rn+1 is our optimization variable. This problem can then be passed to solvers such as

COSMO.jl [97], which support chordal decompositions, for faster solution times.

Discussion. The transformation of variables used here is very similar to the transformation used in

the reduction of linear fractional programs to linear programs [90, §4.3.2], and similar transformations

have been used for computational physics bounds in [99] in the special case that b = 0 and Q = eie
T

i
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(see, e.g., [1, §3.2]). This family of variable transformations has been known in the optimization

literature since the 1960s [155] for a specific subset of optimization problems known as ‘fractional

programming,’ which include problems with objective functions of the form of (5.4). The variable

transformation used on problem (5.6) to get the homogenized problem (5.8) is sometimes called

the generalized Charnes–Cooper transformation [156]. We also note that the same methodology

presented here can be applied to the formulation in [3,99], which is the special case where P and Q

are diagonal with nonnegative entries.

5.2.3 Extensions

There are a few basic extensions for the bounds provided in (5.11).

Boolean constraints. If we are allowed to choose only Boolean parameters, i.e., if we have

θi ∈ {±1}, instead of −1 ≤ θi ≤ 1 for each i = 1, . . . , n, we can write the bound as

maximize tr(P̄X)

subject to tr(Q̄X) = 1

tr(ĀiX) = 0, i = 1, . . . , n

X ≥ 0,

which follows from [1]. All of the same properties for (5.11) also hold for the optimal value of this

problem.

Rewriting the physics equation. In practice, it is sometimes the case that the physics equa-

tion (5.1) is better expressed in the following form:

z +Gdiag(θ′)z = b′, (5.13)

where 0 ≤ θ′ ≤ 1, b′ ∈ Rn, and G ∈ Rn×n. This formulation is sometimes called the ‘Green’s

formalism’ or ‘integral equation’ in electromagnetism and is equivalent to that of (5.1), in that every

(z, θ) that satisfies the physics equation (5.1) has a θ′ such that (z, θ′) satisfies (5.13), and vice versa.

To see this in the case that A is invertible, we can map (5.1) to (5.13) by setting G = (2A − I)−1,

b′ = Gb, and θ′ = (θ + 1)/2.

Similar to [1, 85, 88], we will reduce (5.13) which depends on both the field z and the design

parameters θ′ to an equation depending only on the displacement field w = diag(θ′)z. To do this,

we can write (5.13) in terms of w and z

z +Gw = b′, w = diag(θ′)z.
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Multiplying both sides of the first equation elementwise by w gives:

wizi + wig
T

i
w = wib

′
i
, i = 1, . . . , n,

where gT
i

is the ith row of G. Finally, because 0 ≤ θ′ ≤ 1, we get that w2
i
= θiwizi ≤ wizi, which

means that

w2
i
+ wig

T

i
w ≤ wib

′
i
, i = 1, . . . , n. (5.14)

The converse—that there exists a field z and design parameters θ′ satisfying (5.13) and w =

diag(θ′)z, for any w satisfying (5.14)—can be easily shown; cf., [1, App. A].

Rewriting (5.13) we have that z = b′ − Gw, and replacing the physics constraint in (5.6)

with (5.14) gives a new problem over the displacement field w,

maximize
wTP ′w + 2p′Tw + r′

wTQ′w + 2q′Tw + s′

subject to w2
i
+ wig

T

i
w ≤ wib

′
i
, i = 1, . . . , n,

with variable w ∈ Rn and problem data G, b, and

P ′ = GTPG, p′ = −GTP (p+ b), r′ = bTPb+ 2pT b+ r,

while

Q′ = GTQG, q′ = −GTQ(q + b), r′ = bTQb+ 2qT b+ s.

Applying the same homogenization procedure and semidefinite relaxation, this results in a problem

identical to (5.11) with the following problem data:

P̄ =

%
P ′ p′

p′T r′

&
, Q̄ =

%
Q′ q′

q′T s′

&
, Āi =

%
eie

T

i
+ (eig

T

i
+ gie

T

i
)/2 −b′

i
ei

−b′
i
eT
i

0

&
, i = 1, . . . , n.

Convex constraints. We can also allow convex constraints in the SDP relaxation (5.11). If we

have a number of convex constraints on the field z = y/α given by fj : Rn → R for j = 1, . . . ,m,

we can write
maximize tr(P̄X)

subject to tr(Q̄X) = 1

tr(ĀiX) = 0, i = 1, . . . , n

αfj

@ y

α

A
≤ 0, j = 1, . . . ,m

X =

%
Y y

yT α

&
≥ 0.
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The variables in this problem are the matrices X ∈ Sn+1, Y ∈ Sn, the vector y ∈ Rn, and

scalar α ∈ R, while the problem data is identical to that of (5.11). This new problem is again a

convex optimization problem since the functions αfj(y/α) over the variable (y,α) are convex if the

original functions fj are convex. This transformation is known as the perspective transform and

always preserves convexity [90, §3.2.6]. The resulting problem is then convex and can therefore be

efficiently solved in most cases.

Additional quadratic constraints. Similar to the previous, we can include additional (poten-

tially indefinite) quadratic constraints on the field z into the relaxation (5.11). More specifically, we

wish to include a number of constraints on the field z,

zTUjz + 2uT

j
z + tj ≤ 0,

with matrices Uj ∈ Sn, vectors uj ∈ Rn, and scalars tj ∈ R for j = 1, . . . ,m. Using the fact that

z = y/α, we can write these as

yTUiy + 2αuT

j
y + α2tj ≤ 0, j = 1, . . . ,m,

or, equivalently as

xT Ūjx ≤ 0, i = 1, . . . ,m,

where x = (y,α) as in (5.11) and

Ūj =

%
Uj uj

uT

j
tj

&
, j = 1, . . . ,m.

Using the same relaxation method as in (5.11) with the additional quadratic inequalities, we get the

following semidefinite problem:

maximize tr(P̄X)

subject to tr(Q̄X) = 1

tr(ĀiX) = 0, i = 1, . . . , n

tr(ŪjX) ≤ 0, j = 1, . . . ,m

X ≥ 0.

This problem has the same variables and problem data as (5.11), with the addition of the matrices

Ūj ∈ Sn+1, as defined above.
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5.3 Numerical experiments

In this section, we solve problem (5.11) for the the maximal mode purity of a small mode converter.

We also find a design that approximately saturates the bound. To compute these bounds, we

introduce two open source Julia [119, 157] packages, WaveOperators.jl and PhysicalBounds.jl,

that allow users to setup physical design problems and compute bounds in only a few lines of code.

Our packages setup the dual form of the SDP (5.12) using JuMP [120, 157] and solve it using

COSMO.jl [97]. The code can be found at

github.com/cvxgrp/WaveOperators.jl and github.com/cvxgrp/PhysicalBounds.jl

which can be used to generate the plots found in this chapter.

5.3.1 General physics set up

Physics equation. We assume that the EM wave equation is appropriately discretized and results

in a problem of the form

Az + diag(θ)z = b.

Here z ∈ Cn is the (complex) field while θ ∈ Rn are the (real) parameters and A ∈ Cn×n, b ∈ Cn.

To turn this into a problem over real variables, we can separate the real and imaginary parts of the

variables to get a new physics equation that is purely real:

A′z′ + diag(θ, θ)z′ = b′.

Here, we define:

A′ =

%
Re(A) −Im(A)

Im(A) Re(A)

&
, b′ =

%
Re(b)

Im(b)

&
, z′ =

%
Re(z)

Im(z)

&
,

where Re(x) denotes the elementwise real part of x (where x is a vector or a matrix) while Im(x)

denotes the imaginary part. Note that this results in a larger system with parameters A′ ∈ R2n×2n,

b′ ∈ R2n, and field z′ ∈ R2n, whose parameters are all real. Finally, note that we can write this

system as

A′z′ + diag(θ′)z′ = b′, θ′
n+i

= θ′
i
,

where we have introduced a new, larger vector of parameters, θ′ ∈ R2n with an additional constraint.

Dropping this latter constraint over θ′ leads to a relaxation of the original physics equation, in the

following sense: any design and field that satisfies the original equation also satisfies this new ‘relaxed’

equation. This makes the final physics equation:

Az + diag(θ)z = b, (5.15)
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Design Region

Figure 5.1: The designer wishes to choose materials in the design region to maximize the mode
purity, measured at the output of the waveguide (bottom).

where we have dropped the apostrophes for convenience. As a reminder we have the physics operator

A ∈ R2n×2n, excitation b ∈ R2n, the field z ∈ R2n, and the permittivities θ ∈ R2n. This relaxation

corresponds to allowing the designer to vary both real and imaginary permittivities, where each

component is box-constrained, while the original problem only allows the designer to choose real

permittivities.

5.3.2 Mode converter

The setup is shown in figure 5.1. In this problem, the designer is attempting to design a mode

converter with the maximum mode purity, by choosing the permittivities in the region shown. The

input to this device is the first order mode of the waveguide on the left hand side. The desired output

is a field whose normalized overlap with the second order mode of the waveguide is maximized. In

this problem, the designer is allowed to choose the permittivities within the design region, so long

as the permittivities lie in a given interval. More information about the problem set up is given in

appendix 5.5.1 and the documentation of the corresponding package.

Problem data. In our specific problem set up, as shown in figure 5.1 we have a source that is a

distance of about one wavelength from the design. The design is a square that is one wavelength tall

and two wavelengths wide. In this approximation, we assume that the grid is a 30×60 grid; i.e., the
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Figure 5.2: The design (left) is optimized for mode purity. The corresponding field (right) has very
little power at the output.

side length of a pixel in this simulation is roughly 1/30th of a free-space wavelength, so h = 1/50.

The material contrast (see appendix 5.5.1) is set to δ = 5 while the free-space wavenumber is k = 2π.

Optimization problem. In this experiment, we attempt to maximize the normalized overlap as

defined in §5.1.1:

maximize
(cTRz)2

%Rz%22
subject to Az + diag(θ)z = b

− 1 ≤ θ ≤ 1.

Here the variables and problem data are similar to those of problem (5.6). More specifically, the

problem variables are z ∈ R2n, θ ∈ R2n, while the problem data is the physics matrix A ∈ R2n×2n,

the excitation b ∈ R2n, the vector c ∈ R2n specifying the desired output mode, and the matrix

R ∈ R2n×2n, defined in (5.7), where the region S is the rightmost column of pixels. The resulting

semidefinite upper bound for this problem is given in (5.11) with

P = RccTR, Q = R, p = 0, q = 0, r = 0, s = 0.

Results. The resulting upper bound on the mode purity, that no design can exceed, is .969. We

also find an (approximately) optimal design with θi = θi+n (i.e., with real permittivities). This

design, and its corresponding field, are shown in figure 5.2. The mode purity this design achieves is

.914, which is (.969 − .914)/.969 ≈ 5.7% percent from the upper bound. We note that this design,

while very close to the optimal value for the mode purity, is not very good in a practical sense:

most of the power in the input waveguide is actually scattered out to space. In general, we find

that simply optimizing for the numerator, as is usually done in practice, yields designs that are

relatively efficient and have reasonable mode purity. In this case, simply maximizing the numerator
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Figure 5.3: The design (left) is optimized for mode power. The corresponding field (right) has a
reasonable amount of power at the output while sacrificing some amount of purity.

of the objective results in a design that achieves a mode purity of .788, with an output power that

is approximately 31 times greater. (This design, and its corresponding field, is shown in figure 5.3.)

This difference is highlighted in figure 5.4.

5.4 Conclusion and future work

In this chapter, we have presented a simple method to compute bounds on a number of efficiency

metrics for physical design problems, by solving a semidefinite program. In particular, we focused

on the common case where the efficiency metric can be written as a ratio of two quadratics, which

includes metrics such as the focusing efficiency and the mode conversion efficiency. We present a

small example, but note that, while larger numerical examples are possible, the resulting semidefinite

programs are large; computing bounds on designs of larger sizes in reasonable time will likely require

more sophisticated solvers (or larger computers). While the designs shown here are also somewhat

reasonable, they are still very far from the three dimensional designs that are useful in practice.

Future work would focus on creating faster solvers that can exploit the special structure of these

problems, along with simple interfaces that are user-friendly and can be used to easily set up and

solve these bounds.

5.5 Appendix

5.5.1 Problem set up

The package uses an integral equation approximation to the Helmholtz equation as the physics

equation. We describe how the package solves this problem at a high level in what follows.
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Figure 5.4: The design optimized for mode purity has a much lower output power

Helmholtz’s equation. In this case, the initial physics equation is:

∇2ϕ(x) + k2(1 + κ(x))ϕ(x) = f(x),

for x ∈ Ω. Here, Ω ⊆ R2 is a compact domain, while ϕ : Ω → C is the (complex) amplitude of

the field, while κ : Ω → [0,κmax] is the contrast, k ∈ R+ is the wavenumber, and f : Ω → C is the

excitation. We will show that this can be approximated in the following form:

z +Gdiag(θ)z = Gb,

where θi = kappa(xi)/κmax, bi = f(xi), and zi ≈ ϕ(xi) for some (chosen) points xi ∈ Ω. This is a

common method for computing approximate solutions to Helmholtz’s equation (cf., [158, §2.5]), but
we present it here for completeness.

Green’s function. Whenever κ = 0, i.e., when ϕ satisfies,

∇2ϕ(x) + k2κ(x)ϕ(x) = f(x)

there is a simple solution to the problem by a linear operator G, such that

ϕ = Gf,
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where G is known as the Green’s function of the original equation:

(Gf)(x) = − i

4

B

Ω

H0(k%x− y%)f(y) dy.

Here, H0 : R+ → C is the Hankel function of order zero of the first kind (see, e.g., [159]). Using

this fact, we can then rewrite the original equation in terms of G:

ϕ(x) + (G(κϕ))(x) = (Gf)(x),

where (κϕ)(x) = κ(x)ϕ(x) denotes the pointwise multiplication of the functions κ and ϕ.

Approximation. We can then approximate the previous expression by taking a discretization.

We assume that {x1, . . . , xn} ⊆ Ω denotes a regularly-spaced grid with grid spacing h > 0. In this

case, we will approximate the equation in the following way:

z +Gdiag(θ)z = Gb,

where z ∈ Cn is an approximation of the field amplitude ϕ, G ∈ Cn×n is the Green’s operator,

b ∈ Cn is the excitation, and θ ∈ [0, 1]n are the permittivities along the points of the grid. We can

then make the following correspondences:

θi = κ(xi)/κmax, bi = f(xi), i = 1, . . . , n.

while

Gij = −δ(i/4)hH0(k%xi − xj%), i, j = 1, . . . , n, i ∕= j.

This corresponds to approximating the integral with a Riemann sum on all of the off-diagonal terms.

Because H0(0) is undefined, we will approximate the diagonal terms with the following integral:

Gii = − iδ

π

B 2π

0

B
h/2

0

tH0(kt) dt dρ = −4i

B
h/2

0

tH0(kt) dt =
4

πk2
− ih

k
H1

8
kh

2

9
,

where H1 is the Hankel function of order 1 of the first kind, while δ = κmax is known as the

maximum material contrast. We can interpret this integral as integrating H0 over a circle of radius

h/2 and linearly interpolating the resulting value to a square of side h by scaling the result by

h2/(π(h/2)2) = 4/π.

With these definitions (and some additional regularity conditions on f , κ, and Ω which almost

universally hold in practice), we then have that zi ≈ ϕ(xi). In other words, the solution to the

discretized problem is approximately equal to the true solution at the grid points xi.
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5.5.2 Performance tricks

In this section, we outline some additional tricks and tools which the overall computation time of

both the bounds and the heuristics when using this formulation. Most of these ideas are implemented

in whole or in part by the WaveOperators.jl library, but we describe them here at a high level.

Removing zero-contrast points. In many important practical cases, we usually prefer to write

the physics equation

z +Gdiag(θ)z = Gb

and constrain several entries of θ to be equal to zero (i.e., these entries imply that there is no material

present at position xi in the grid). In this case, it is possible to separate z into the components

which have nonzero contrast z0 and positive contrast, z+. We assume that the entries are in order

such that z = (z0, z+) and θ = (0, θ+). This means we can separate the physics equation into its

individual components

Gdiag(θ)z =

%
G00 G0+

G+0 G++

&%
diag(θ0)z0

diag(θ+)z+

&
=

%
G00 G0+

G+0 G++

&%
0

diag(θ+)z+

&
,

where the diagonal matrices are square. Written out, after cancellations, we get

z0 +G0+ diag(θ+)z+ = (Gb)0

z+ +G++ diag(θ+)z+ = (Gb)+.

Note that the first equation can be written as

z0 = (Gb)0 −G0+ diag(θ+)z+,

so no inverses need to be computed and all field values z0 can be easily written in terms of the

variables diag(θ+) and z+ only, while z+ does not depend on the values of z0.

Schur complement. In some other special cases, it is also easier to specify parameters θ+ which

might be nonzero, but are fixed ahead of time. For convenience, we will write θ+ = (θc, θf ), where

θc are the nonzero parameters that are constrained, while θf are the free parameters, and similarly

for z+ = (zc, zf ). In this case, we can similarly separate the physics equation into its individual

components:

G++ diag(θ+)z+ =

%
Gcc Gcf

Gfc Gff

&%
diag(θc)zc

diag(θf )zf

&
.
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This results in the following physics equations over the points with nonzero contrast:

zc +Gcc diag(θc)zc +Gcf diag(θf )zf = (Gb)c

zf +Gfc diag(θc)zc +Gff diag(θf )zf = (Gb)f .

We can then eliminate the variable zc form this equation to receive a linear equation that depends

only on the product of the free parameters and the points corresponding to the free field, diag(θf )zf .

To do this, we solve for zc in the first equation:

zc = (I +Gcc diag(θc))
−1((Gb)c −Gcf diag(θf )zf ),

and plug it into the second to get

zf + (Gff + Ḡcc)diag(θf )zf = (Gb)f + b̄c,

with

Ḡcc = −Gfc(I +Gcc diag(θc))
−1Gcf , b̄c = −Gfc(I +Gcc diag(θc))

−1(Gb)c,

which is easily seen to be of the form of (5.13). Because the SDP size scales quadratically on the

number of field variables, and SDPs themselves usually have a large runtime, this is often a useful

procedure as it only requires computing the matrix Ḡcc once at the beginning of the problem. This

then reduces the total number of variables in the SDP at the expense of computing a single matrix

factorization at the beginning of the procedure.
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