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Abstract

The intuitions behind succinct proof systems are often difficult to separate from
some of the deep cryptographic techniques that are used in their construction. In this
paper, we show that, using some simple abstractions, a number of commonly-used tools
used in the construction of succinct proof systems may be viewed as basic consequences
of linear algebra over finite fields. We introduce notation which considerably simplifies
these constructions and slowly build a toolkit of useful techniques that can be combined
to create different protocols. We also show a simple ‘probabilistic calculus’ which
specifies how to combine these tools and bounds on their resulting security. To show
the power of these abstractions and toolkit, we give a short proof of the security of
the FRI protocol. Along the way, we discuss some natural generalizations of protocols
in the literature and propose a conjecture related to proximity testing using linear
error-correcting codes that is of independent interest.

Introduction

Succinct proofs and arguments play an important role in ensuring privacy and integrity
of computation, with many applications in blockchains among other fields. To understand
succinct proofs, we may contrast them with ‘traditional’ computational proofs; i.e., providing
a witness for a given statement. Traditional computational proofs may be viewed as a
certificate that a certain computation was performed correctly. Succinct proofs, compared
to computational ones, make the following tradeoff: they allow some very small probability
of error that the proof incorrectly verifies (that is, the proof is accepted as good, even though
the computation was done incorrectly) in exchange for a short, easy to verify certificate—
often much shorter and faster to verify than the corresponding traditional proof would be.

Historically, succinct proofs leverage interaction and randomness to achieve their stated
goal. Related to this idea of succinct proofs are the succinct noninteractive arguments of
knowledge (SNARKs, for short), which are of growing practical interest [BCCT13,BSCG+13,
BBB+18, Nit20, Tha22]. Common to both of these approaches is the use of randomness
to reduce complicated statements to simpler ones, which is the focus of this work. Note
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that practical implementations of these protocols often involve careful considerations around
communication models or cryptographic assumptions, which we elide here.

Our goal in this paper is to provide a minimal framework for understanding the tools
used in many protocols involving random reductions. To do this, we mostly limit ourselves to
linear algebra over finite fields and some basic probability theory. These tools are sufficient
to explain a surprising number of results and checks used throughout much of the literature.

Other work. Other authors have noted that, indeed, some of the reductions may be
generalized to any number of other domains. For example, a recent line of work, exemplified
by [BCS21], [RZ21], and [KP22] provided a number of frameworks for thinking about some
of the reductions used in succinct proofs. The papers [BCS21] and [KP22] are probably the
closest in spirit to this work. Each paper shows that some reductions used in the literature
may be understood from the perspective of module theory and focus mostly on the sumcheck
protocol and its generalizations over spaces with tensor structure. Many of the statements
we present in this paper similarly have natural module-theoretic generalizations which may
be of possible interest, but we do not expand on this here.

This work. In this paper we show that many of the tools and ‘checks’ used in succinct
proofs can be viewed as a consequence of basic facts from linear algebra over finite fields.
This perspective also suggests some generalizations. For example, one common operation in
succinct proof systems is to check if a number of vectors all lie in some subspace, say V . It
is possible to show that, with high probability, all vectors lie in this subspace V only when a
uniformly random linear combination of the vectors lies in V . In this sense, we have reduced
a potentially ‘very large’ problem (of checking that each vector lies in V ) to a much smaller
problem (of checking a single vector lying in V ) using randomness; many protocols rely on
this (and similar) reductions. We show that the ‘uniform random linear combination’ may
be replaced with a more general construction: a uniformly chosen random row of a generator
matrix for a linear code of large distance.

1 Preliminaries and notation

In this section, we discuss some basic facts from linear algebra, error correcting codes, and
the conventions used in this paper. A reader that is very comfortable with linear algebra
and the basics of error correcting codes should feel free to skim this material to understand
the notation used in this paper and proceed directly to §1.4.

1.1 Linear algebra

In this paper, we will take the linear-algebraic standard for notation (versus, e.g., some
standards in coding theory). In particular, all vectors are column vectors (unless otherwise
specified) and matrix-vector products are written in that order. (We can then interpret
matrix-vector products as linear combinations of the columns of the matrix, rather than the
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rows.) The presentation here is not intended to be an introduction to linear algebra—for
that, we refer the reader to, e.g., [Axl14]—but is simply meant to be a refresher.

Vectors and matrices. Given a finite field F we write Fn for the set of n-vectors with
elements in F and write Fm×n for the set of matrices with m rows and n columns with
elements in F. For example, we may have x ∈ Fn and A ∈ Fm×n, then

Ax =
n∑

j=1

xjaj,

where aj ∈ Fm is the jth column of A, which means that Ax is an m-vector. A common
view will be to look at one specific element of the resulting vector Ax. For example, we may
write the ith element as

(Ax)i = ãTi x,

where ãi denotes the ith row of A (viewed as a column vector) and ãTi is the transpose of ãi
(which is a row vector). We will identify the n-by-1 matrices with the n-vectors, when the
meaning is clear.

Vector spaces and subspaces. Any subset V ⊆ Fn which is itself a vector space (i.e.,
V is closed under linear combinations of its elements) is called a subspace. (If V ′ ⊆ V and
V ′ is a vector space, we say that V ′ is a subspace of V .) Examples of vector subspaces are,
of course, Fn or the singleton {0}. Another important example is, given a vector x ∈ Fn,
the ray

{αx | α ∈ F}

is a subspace. Some useful and important operations on vector spaces are sums and inter-
sections. In particular, if U, V ⊆ Fn are both subspaces, then their sum (sometimes called
their Minkowski sum), defined

U + V = {u + v | u ∈ U, v ∈ V }, (1)

is also a subspace. (We purposefully overload the + operation for convenience.) Additionally,
their intersection U ∩ V is also a subspace.

Range and nullspace. Every matrix A ∈ Fm×n defines two vector subspaces. The first
is its range (sometimes called the image of A) defined as

R(A) = {Ax | x ∈ Fn}.

From its definition, R(A) ⊆ Fm. In English: the range of a matrix A is the set of all vectors
that are linear combinations of the columns of A. The second vector space is its nullspace
(sometimes called its kernel) written

N (A) = {x ∈ Fn | Ax = 0}.
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This is the set of vectors which are mapped to zero under the action of A. It is not hard
to verify that both R(A) and N (A) are vector spaces (subspaces of Fm). A matrix A is
said to be injective if N (A) = {0} since, if y = Ax for some x ∈ Fn, then this vector x is
unique. Similarly, we say that a set of n-vectors {ai} is linearly independent if, viewed as
the columns of a matrix

A =
[
a1 a2 . . . an

]
,

then the nullspace of A is only the zero vector. In other words, we say the {ai} are linearly
independent if every nonzero linear combination of the vectors ai is nonzero.

Representations of subspaces. A basic fact from linear algebra is that every subspace
V ⊆ Fm can be written as the range of some injective matrix A ∈ Fm×n,

V = R(A),

where n is called the dimension of the subspace V . (The columns of A are called a basis for
V .) Since A is injective, we have that m ≥ n. Similarly, the subspace V can be written as
the nullspace of some matrix C ∈ Fk×m such that

V = N (C),

and k = m − n. This matrix is sometimes called the parity check matrix, which is the
terminology we adopt here. Another way of stating this definition of C is:

x ∈ V if, and only if, Cx = 0. (2)

Polynomial evaluations. One particular example we will use constantly is the vector
space consisting of the evaluations of a polynomial of small degree. In particular, let {αi} ⊆
F, for i = 1, . . . ,m, be some evaluation points and n ≥ 1 be some given number, then the
set of polynomials of degree less than or equal to n− 1, evaluated at the points αi, forms a
vector space V since it can be written as the range of the matrix

A =


1 α1 α2

1 . . . αn−1
1

1 α2 α2
2 . . . αn−1

2
...

...
...

. . .
...

1 αm α2
m . . . αn−1

m

 . (3)

(This matrix is called the Vandermonde matrix of degree n − 1 for the evaluation points
αi.) To see this, note that every polynomial of degree at most n− 1, say f : F → F, can be
written as

f(β) = x1 + x2β + x3β
2 + · · · + xnβ

n−1,

where x ∈ Fn. So, we may write

f(αi) = x1 + x2αi + · · · + xnα
n−1
i = (Ax)i,
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for any polynomial of degree at most n − 1. Because of this, the set of evaluations of all
possible low-degree polynomials f , written as vectors (f(α1), . . . , f(αm)), is just

V = R(A).

Finally, because we know that the range of any matrix is a subspace and since V is the range
of the matrix A, then the set V must also be a subspace.

Direct sums. If V ⊆ Fn is a subspace and T, U ⊆ V are subspaces of V satisfying the
property that T ∩ U = {0} and V = T + U , where

T + U = {y + z | y ∈ T, z ∈ U},

then we say that V is the direct sum [Axl14, §1] of T and U . We write this as V = T ⊕ U ,
for shorthand. The interpretation of this is that, if x ∈ V , then it can be written uniquely
as

x = y + z,

where y ∈ T and z ∈ U . We may extend this definition to any number of subspaces, Vk ⊆ V
with k = 1, . . . , s, and in this case we write

V = V1 ⊕ V2 ⊕ · · · ⊕ Vs,

if V = V1 + · · · + Vs and Vk ∩ Vl = {0} for every k ̸= l with k, l = 1, . . . , s.

1.2 Linear error correcting codes

In this section, we introduce some basic definitions from linear error correcting codes, along
with some examples of codes that we use throughout. Though we will not use any deep
results from error correcting codes, other than the definition of distance, we refer readers to
the excellent series of lecture notes [Woo22] for more.

1.2.1 Weight and distance

The weight of a vector x ∈ Fn, defined

∥x∥0 = |{i | xi ̸= 0}|,

is the number of nonzero entries of a vector x. (This is often referred to as the Hamming
weight, but we simply use the term weight for this paper.) We write this as ∥ · ∥0, as this is
sometimes called the ℓ0-‘norm’, since it satisfies the triangle inequality

∥x + y∥0 ≤ ∥x∥0 + ∥y∥0,

for any y ∈ Fn. It also satisfies definiteness in that ∥x∥0 = 0 if and only if x = 0, and
satisfies 0-homogeneity in that, for any α ∈ F with α ̸= 0,

∥αx∥0 = ∥x∥0.

(This ‘norm’ is not a true norm as norms must usually be 1-homogeneous.) Using this
‘norm’, the distance between two vectors x and y can then be written as ∥x− y∥0.
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Notation. We overload this norm notation for convenience to also work over sets: given a
set S ⊆ Fn, we write

∥S∥0 = min
x∈S

∥x∥0,

such that the weight of a set S is the minimum weight of any vector in the set. This notation
is quite convenient: writing, as in (1),

x− S = {x− y | y ∈ S},

we may then view
∥x− S∥0 = min

y∈S
∥x− y∥0,

as the minimum distance between x and any vector in the set S.

1.2.2 Linear codes

A linear code is defined as a matrix G ∈ Fm×n. (Technically, many matrices G may generate
the same code, which is usually defined as R(G), but we ignore the distinction here.) We
say that n is the message length and m is the block length of the code given by G. This is
called a linear code since we can take a message x ∈ Fn, which is simply an n-vector over
the field F, and encode it by applying the matrix G to get a length m codeword, Gx. It is
linear since the codeword corresponding to any linear combination of messages is just the
same linear combination of the individual codewords.

Distance. The main definition that we will use throughout this paper is the distance of
the code G, defined

d = min
x∈Fn\{0}

∥Gx∥0,

where ∥z∥0 denotes the number of nonzero entries in z ∈ Fm. This is called the distance
since any two distinct messages x, y ∈ Fn with x ̸= y will differ in at least d places after
being encoded; i.e.,

∥Gx−Gy∥0 = ∥G(x− y)∥0 ≥ d,

since x− y ̸= 0.
Note that G has linearly dependent columns (i.e., nontrivial nullspace) if, and only if,

the distance d = 0. In other words, if the distance d > 0 then G is injective; this implies
that the distance d can be positive only when m ≥ n.

Discussion. At the highest level, we may view codes with large distance d as those which
encode ‘errors’ in the original message in many places. More specifically, if we have some
expected message, say x ∈ Fn, but, instead, receive a corrupted message x+ δ where δ ∈ Fn

has a small (but nonzero) number of corruptions, we know that

∥G(x + δ) −Gx∥0 = ∥Gδ∥0 ≥ d.
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So if d is roughly of the size of m (where m is the size of the codeword) then, if we expect
message x, but instead receive x̃ = x + δ, it only suffices to check that Gx (the encoded
expected message) differs from Gx̃ (the encoded received message) in a few entries, to ‘catch’
the fact that x̃ ̸= x. This rather simple fact, and its consequences, will be the basis for the
entire remainder of the paper.

1.3 Examples of linear codes

There are a number of important linear codes that are used in the broader literature. We
show a few examples, along with some properties, here.

1.3.1 Repeated code

A very simple (and silly) family of codes are the k-repeated codes, given by the matrix
G ∈ Fkn×n, defined

G =

In...
In

 ,

where In ∈ Fn×n is the identity matrix of size n× n. This code simply takes some message
x of length n, repeats it k times, and stacks the result into a vector of size kn; i.e., given
some vector x ∈ Fn:

Gx =

x...
x

 ,

where the vector x is stacked k times

Distance. This code has distance d = k, which is easy to see from its definition.

1.3.2 Reed–Solomon codes

A more interesting (and common) choice of codes are the Reed–Solomon codes. Assuming a
message of length n and given some block size m ≥ n, we may pick any subset of evaluation
points {α1, . . . , αm} ⊆ F. We can then define the matrix as G ∈ Fm×n in the following way:

Gij = αj−1
i ,

for i = 1, . . . ,m, and j = 1, . . . , n. (The definition here is exactly the definition of the
Vandemonde matrix given in (3), written in index notation.)
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Distance. Since a nonzero degree d polynomial has at most d roots (over any field F) then
the distance of this code is at least m− n + 1 since

(Gx)i =
n∑

j=1

xjα
j−1
i ,

is a degree at most n − 1 polynomial with coefficients xj, evaluated at each of the αi. It is
not hard to construct a polynomial of degree n− 1 which has exactly m− n + 1 zeros when
evaluated over the points α1, . . . , αm, which makes the distance of this code exactly equal to
m− n + 1.

1.3.3 Hadamard code

Another common code is the Hadamard code, which is defined by a matrix G ∈ Fm×n whose
rows contain all possible tuples from Fn. (Here, then, m = |F|n.) Drawing a row uniformly
at random corresponds to drawing a uniformly random tuple from Fn.

Distance. The distance of this code is d = |F|n − |F|n−1. To see this, consider any row i
of G, which we write as y. Then, given a message x ̸= 0, we have that at least one index,
say j, has xj ̸= 0. So, if the ith symbol of Gx is zero, we have

(Gx)i = yTx = yjxj + ỹT x̃ = 0,

where x̃ is the vector x with entry j removed, and similarly for y. We can write this as

yj = −x−1
j (ỹT x̃).

Note that any choice of ỹ fixes yj from the above equation. Since there are |F|n−1 possible
options for ỹ satisfying this condition, then there are at most |F|n−1 possible symbols of
Gx that are zero, or, equivalently, at least |F|n − |F|n−1 symbols that are nonzero in Gx,
whenever x ̸= 0. (Indeed, there are exactly |F|n−1 possible options for ỹ, which shows that
the bound is tight.)

1.4 Probabilistic implications

It will be useful to define some basic notation which will clean up the proofs that follow. In
particular, this notation can be seen as compact way of expressing logical statements (such
as implications) in a probabilistic setting, where there is some probability that a statement
is not true. Even in this case, we will show that analogues of the basic rules of logic still
hold.
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Implications. Given two statements Pr and Qr′ (in other words, two Boolean functions
taking on values 0 or 1) that depend on random variables r and r′ drawn from some set, we
write

Pr =⇒
p

Qr′ ,

if Pr(Pr ∧ ¬Qr′) ≤ p over randomness r and r′; i.e., if the probability that Pr is true, yet
Qr′ is not, is no larger than some value p. In general, we make no assumptions about the
distribution of r and r′ except that it should be explicit in the text. Almost universally,
in the remainder of this work, we will either have r = r′ or r and r′ independently and
uniformly drawn from some set. When it is clear from context what the randomness is over,
we will sometimes write this as Pr implies Qr′ with error (at most) p.

The basic idea behind this notation is to think of p as the probability that the statement
is ‘wrong’. If p = 0, then this reduces exactly to the usual definition in propositional logic,
while, if p is very small, we can think of the statements as being ‘almost equivalent’ under the
randomness. In general, this relation will satisfy many similar rules to those of propositional
logic, with additional ‘error’ terms that satisfy some basic rules we discuss below.

Chaining implications. Given three statements with

Pr =⇒
p

Qr′ , and Qr′ =⇒
p′

Tr′′ ,

over randomness r, r′, and r′′, then

Pr =⇒
p+p′

Tr′′ .

This is not hard to see from the union bound, but we provide the easy (if verbose) proof in
appendix A. Note that, since ‘normal’ implication can be written as =⇒

0
, then this bound

says, if
Pr =⇒

p
Qr′ , and Qr′ implies Tr′′ ,

then Pr =⇒
p

Tr′′ . (In the ‘usual’ logical implications, we will have that r′ = r′′.)

Contrapositives. It is also similarly easy to see that, if

Pr =⇒
p

Qr,

then
¬Qr =⇒

p
¬Pr,

from the definition.
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Conjunctions. Another interesting point is, given some ‘deterministic’ claim Q (that does
not depend on randomness; it is either true or false), and the following implications

Pr =⇒
p

Q, and Tr′ =⇒
p′

Q,

then, if r and r′ are independent, we have

Pr, Tr′ =⇒
pp′

Q.

This follows essentially from the definition of independence and the probabilistic implications
above. In English: if we have two claims we can independently verify, each of which implies
Q with low probability of error p and p′, then verifying both (with independent randomness)
must imply Q with much lower probability of error pp′. A special case of this is: repeating a
check with independent and identical randomness decreases the probability of failure of the
check from p to p2.

Discussion. While the notation (and some of the basic implications) described here look
simple, they will reduce the complexity of the discussions by allowing us to talk about, and
compose, statements in a very compact way, without requiring additional overhead. We
will make constant use of the rules described here throughout the remainder of this paper.
Interestingly, as far as the authors know, this subject has only been explored in the context
of data analysis and inference, as a special case of fuzzy logic implications [BJ08], but, to
the authors’ knowledge, little of it has been used in the general proof setting (along with its
implications).

2 The structure of checks

This section explains the general model and assumptions that go into many of the tools used
in succinct proof systems, along with explaining how randomness is useful in making these
tools practical. Those familiar with the structure of succinct proof systems should feel free
to skim this section and proceed to the next section directly.

We will start this section with a very simple example, known as the zero check and its
variation, the sparsity check, both of which we analyze later in more detail. This will then
help motivate the remainder of the section and show how claims that are expensive to verify
may be successively ‘reduced’ to smaller claims that are cheaper to verify.

2.1 The zero check

In the examples that follow, we seek to answer the following question: given two vectors x
and y (say, in Fn), are the two vectors equal? Of course, we may verify whether x = y by
checking if each of their n elements are equal. Indeed, this is the best we can hope to do if
we must be absolutely certain whether x = y, yet only have access to x and y by querying
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individual entries of each vector. If n is large—in many practical cases, n is on the order
of 220 or so—this could prove to be an expensive procedure if fetching each element incurs
some reasonable cost.

2.1.1 Sparse checks

One ‘relaxation’ of the above question is to check if, instead, x is ‘close to’ y. That is, we
would like to guarantee that

∥x− y∥0 ≤ q, (4)

for some threshold q ≥ 0, set ahead of time. From before, if we must be absolutely certain
that x and y are no more than q apart from each other, we must check that at least n − q
entries of x and y are equal. (We recommend the reader convince themselves of this before
proceeding.)

In practice, though, we rarely care that a statement is perfectly true. For example, if
a statement is false with probability no more than 2−100, it might as well be true for all
intents and purposes. Of course, this assumes that the probability is measured over some
‘reasonable’ notion of randomness, but we will see that this can be achieved in what follows.

Probabilistic sparse checks. Perhaps the simplest ‘check’ is to uniformly randomly draw
indices r ∼ {1, . . . , n} and verify that xr = yr at each of these indices. If the desired
condition (4) is not true, that is, if ∥x− y∥0 ≥ q + 1, then the probability that a uniformly
randomly chosen index lands on one of the entries with xr ̸= yr is at least

1 − q + 1

n
.

If we repeat this procedure ℓ times, uniformly and independently drawing indices from
1, . . . , n, the probability that we never ‘catch’ at least one of the indices for which xr ̸= yr is
easily bounded from above by (

1 − q + 1

n

)ℓ

.

To guarantee a probability of failure no more than p, then, it suffices to repeat the experiment

ℓ ≥ n

q + 1
log

(
1

p

)
times. (We have used the fact that log(1−x) ≤ −x in this bound.) If n is large (say n = 220)
and q = n/10, yet we wish the probability of failure to be no more than 2−100 then, repeating
the experiment

ℓ ≈ 700

times suffices. In other words, only about 700 queries to elements of x and y are needed
to verify the claim. On the other hand, checking that this condition holds exactly requires
checking that n − q entries are equal, which is still on the order of about a million queries.
While this particular observation is not ‘deep’ in any meaningful sense, the basic idea is
generalized to a much broader setting in §3.2.
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2.1.2 Models and the ‘exact’ zero check

In the second setting, we wish to check whether x is exactly equal to y with high probability.
Checking exact equality with high probability using the procedure described previously es-
sentially boils down to setting the threshold q = 0, which means that the number of queries
is roughly n. (Indeed, a simple argument shows that, to guarantee any probability of failure
smaller than 1, p < 1, we always need on the order of n queries.) This means that a new
interaction model is required if we want to do better than n queries, which we cover in a
brief aside below.

Direct access model. As a baseline, we can view the communication model discussed up
until this point as a simple direct access model. In that model, x and y are vectors stored in
some drive handed to us, say. We then pay some fixed cost for each query, which accesses
a single element of x or y. The drive is assumed to be ‘truthful’ in that it simply relays
information about x and y as queried. (Such a guarantee is not obvious: for example, one
could easily imagine a malicious ‘smart’ drive that attempts to adapt its responses based on
the previous queries we made.)

Coding model. We can propose a different model by slightly generalizing the direct access
model, which we call the coding model. In this model, instead, we are handed a black box.
This black box has a fixed code matrix G ∈ Fm×n, known to us, along with some message
x ∈ Fn, unknown to us. We then are allowed to query some index i for symbol (Gx)i from
the encoded message Gx, paying a fixed cost for each query performed. The direct access
model is the special case where the code matrix G is the identity G = I, such that querying
the ith symbol of Gx is the same as querying the ith symbol from the message x.

Model discussion. We note that these models assume that the queries are answered
truthfully; i.e., that the black boxes being handed to us answer queries in a way consistent
with their definitions above. This, of course, seems like a very difficult restriction. Indeed, if
a stranger (or, more specifically, a paper author) hands us such a black box on the street with
a promise that it satisfies these definitions, we should be extremely skeptical of these promises
and the authors more generally. Luckily, in many practical cases, we can replace black boxes
with cryptographic protocols that have certain guarantees. For example, the direct access
model can be replaced with a Merkle commitment [KL21, §6.6.2], while the coding model
can be replaced with any number of possible polynomial commitments [KZG10] (when the
matrix G corresponds to a Reed–Solomon code), inner product commitments [BCC+16] (for
general matrices G), among many others.

Probabilistic zero check. Now that we have defined the coding model, we will show
that, surprisingly, we can construct a simple procedure in this model to check if x ∈ Fn is
equal to y ∈ Fn that succeeds with high probability, assuming that the code matrix G has
relatively large distance, using only a single query.
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To see this, let G ∈ Fm×n be a m-by-n matrix with distance d. The procedure is as
follows:

1. Uniformly randomly sample an index r from 1, . . . ,m

2. Query the rth symbol of Gx and Gy to receive (Gx)r and (Gy)r

3. Verify that (Gx)r = (Gy)r

If x = y, then this procedure correctly verifies this fact. On the other hand, if x ̸= y, the
probability that (Gx)r = (Gy)r is very small. Since

(Gx)r − (Gy)r = (G(x− y))r,

and x − y ̸= 0, then G(x − y) has at least d nonzero entries, by the definition of distance.
The probability that a uniformly randomly chosen index r lands in one of those entries is at
least d/m, or, conversely, the probability that r ‘misses’ one of these nonzero entries is at
most 1− d/m. If d is very close to m, then this probability is nearly zero. To make concrete
what ‘nearly zero’ means, consider a Reed–Solomon code matrix (see §1.3.2) whose subset of
evaluations is every element of F (such that m = |F|). If n = 220 (as our previous example)
and |F| = 2255 − 19 (as in some standard protocols [BS23, §15.3.3]), then d = m− n + 1, so
the probability that this procedure errs is no more than

1 − d

m
≈ 2−235,

which is effectively zero for all practical purposes.

2.2 Succinctness and zero knowledge

The procedures above have two interesting properties. First, in a very general sense, we
started with the task of checking whether two potentially very long vectors, x and y, are
equal. By using some randomness, we have reduced this task to a much smaller one: checking
whether a small number of values are equal to one another. This latter ‘simple’ claim, if
true, lets us claim the ‘global’ statement that the two vectors x and y, each composed of
many field elements (in fact, n of them), must be equal or ‘close’. The second interesting
point is that, in a certain sense, we learn very little about the vectors x and y (with a small
modification, it is possible to ensure we actually learn practically nothing) other than the
original fact we wished to verify.

We will focus almost universally on the first part: taking a large claim and reducing it
to a much smaller one, such that it suffices only to verify the smaller claim, which, in turn,
implies the original one with high probability. The second part, while interesting in its own
right, is mostly avoided in the remainder of this text. We refer the reader to [Tha22] for
(much) more.

13



Reductions. In a certain sense, we may view the above procedures in §2.1 as a type of
‘lossy’ reduction. The procedures begin with a certain very large claim, and this claim is
reduced to a much simpler one that is easier to verify, but in doing so, we accept some
probability of failure. (This probability of failure cannot be avoided [BS23, §20] and is
essential in making the reduction ‘easier’ than the original problem.) Indeed, any reduction
we present here can be split into three steps: first, we are handed some black box, we then
query the black box, and finally we verify that its result is consistent with some statement.
Ideally, verifying the result in the last step is much easier than the original claim we wished
to show; in some cases, though, it is only marginally easier. In these cases, we can then
replace this last step with another reduction (and accept some additional error for doing so)
that is also marginally easier, and so on, until the claim has been reduced to a very simple
one, which also has a very small probability of error. This is the basic structure of a number
of succinct proof systems, a few of which we generalize here.

Size of the generator. Another important point that could be raised is that, for example,
the matrix in §2.1.2 is very large: the number of rows of G is m = |F|, which is on the order
of 2255, far too large to fit in any computer. The important thing to keep in mind is that
the whole matrix should never be constructed. The only way that the matrix G is ‘accessed’
is in finding a specific symbol, say r of the encoding, (Gx)r, which means that it suffices to
only construct the rth row of G, written g̃Tr , which we can use to compute the symbol by
noting that

(Gx)r = g̃Tr x.

Indeed, in many of the checks that follow, we only need the ability to query the inner product
of the message x with a single row of the matrix G, even when this matrix is very large.

3 Standard checks

In the remainder of this paper, we will build up a library of such ‘checks’, beginning with the
zero checks presented above. Using the probabilistic implications presented in §1.4, it will
then be possible to compose these checks in a variety of ways to achieve certain outcomes.
Along the way, we will give natural linear-algebraic generalizations of many checks and tools
commonly used in succinct proof systems, along with some conjectures that greatly generalize
a number of standard protocols.

3.1 Classic checks

In this section we focus on what we call the ‘classic’ checks: those which check exact inclusion,
exact equality, and so on. This should be compared to the ‘sparse checks’ presented later
in this section, which only seek to verify that vectors are ‘close enough’ to others. This is
presented first as some of the tools used in the checks here are used in the later section.

For the remainder of the section, G ∈ Fm×n will be a matrix representing a linear code
with message length n and block length m. We will assume that the distance of this code is
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d ≥ 0. It will sometimes be convenient to consider the rows of G, which we write as g̃Tr for
the rth row.

3.1.1 Zero check

This is a rewriting of the zero check presented in §2.1.2, using the notation defined in §1.4.
One particular reduction of interest is to note that checking that two vectors are equal is,
roughly speaking, the same as checking if a single vector is nonzero. In particular, checking
that x = y is identical to checking that x − y = 0, and, using the linearity of G, as in the
proof given in §2.1.2, it suffices only to check this latter claim.

Check. Given a linear code with generator G ∈ Fm×n and distance d, we wish to show that
x = 0 with high probability, by checking a much smaller claim. We can write the procedure
specified in §2.1.2 compactly using this notation. For any x ∈ Fn, the following is true

(Gx)r = 0 =⇒
p

x = 0, (5)

where the randomness is over r, uniformly sampled from {1, . . . ,m}, and p ≤ 1−d/m. (The
reverse direction is obviously always true.) Parsing the symbols in expression (5) carefully,
it may be read as: if (Gx)r = 0, for a uniformly randomly chosen r in 1, . . . ,m, then the
probability that x ̸= 0 is no more than p. In other words, it suffices to check that a single
random symbol of the encoding of x is zero to conclude that x is the zero vector, with high
probability (at least 1 − p). Note that this is exactly the claim we showed in §2.1.2, but the
notation here is considerably more compact. As a useful exercise, note that the check (5)
can also be written

g̃Tr x = 0 =⇒
p

x = 0, (6)

where g̃Tr denotes the rth row of G.

Example. A special case of this relation, used in a number of zero knowledge protocols, is
known as the polynomial zero check [Tha22, §2.2]. This check says that, given a polynomial
f : F → F of degree no more than n − 1, if we uniformly randomly sample a point r ∈ F
and find that f(r) = 0, then, with probability at least 1 − (n− 1)/|F|, we know that f = 0
everywhere. We may write this in the above notation as:

f(r) = 0 =⇒
p

f = 0,

where p ≤ (n− 1)/|F|. Note that this is the special case of the check provided in (5), where
the coefficients of the polynomial f are represented as a vector x ∈ Fn such that

f(β) = x1 + x2β + · · · + xnβ
n−1,
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for β ∈ F, and the matrix G ∈ Fm×n is the Reed–Solomon code matrix §1.3.2 where every
field element in F is an evaluation point. This means that m = |F|, and, using the probability
bound in (5) we find

p ≤ 1 − d

m
= 1 − |F| − n + 1

|F|
=

n− 1

|F|
,

where the first equality uses the distance of a Reed–Solomon code d = m − n + 1. This
matches the bound of the original polynomial zero check (cf., [Tha22, §2.1]) exactly, as
expected.

3.1.2 Matrix zero check

We may check that a matrix X ∈ Fk×n is zero by reducing the claim to checking that a
single k-vector is zero.

Check. Let X be an k × n matrix, with columns x1, . . . , xk. We may then check that X
is zero by noting that

Gr1x1 + · · · + Grnxn = 0 =⇒
p

X = 0, (7)

where the randomness is again over r, uniformly sampled from {1, . . . ,m}, and we have that
p = 1 − d/m. We may view the check (7) as uniformly randomly drawing a row of G, say
g̃Tr , using this row to take a linear combination of the columns of X, and checking that the
result is zero; we may write this as,

Xg̃r = 0 =⇒
p

X = 0, (8)

where, again, g̃r is a uniformly randomly selected row of G, viewed as a column vector, and
p ≤ 1 − d/m.

Proof. The proof follows by reducing this case to the previously presented zero check. Let
x̃T
1 , . . . , x̃

T
k be the k rows of the matrix X:

X =

x̃
T
1
...
x̃T
k

 .

Now, let’s say that for uniformly randomly chosen r from 1, . . . ,m, we have that the left-
hand-side of the claim (7) is true,

Gr1x1 + · · · + Grnxn = 0, (9)

then, this is the same as saying that

(Gx̃1)r = 0, . . . , (Gx̃k)r = 0.
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(All we have done is reinterpret the sum (9) in terms of the rows of X, as opposed to the
columns.) From before, we know that each of these has

(Gx̃j)r = 0 =⇒
p

x̃j = 0,

where p ≤ 1− d/m, for j = 1, . . . , k. But then, if every row of X is zero, x̃j = 0, this implies
X = 0, which gives the result that

Gr1x1 + · · · + Grnxn = 0 =⇒
p

X = 0,

with the same p as above, p ≤ 1 − d/m.

Example. This reduction is very similar to a number of ‘common’ checks: for example,
to check that a list of vectors is zero, many protocols [BCMS20, KST22] will take a uni-
formly random linear combination of these vectors and check that the result of this linear
combination is zero. We note that this is exactly the special case of the check (7) when the
matrix G is a Hadamard code matrix (see §1.3.3), in which case randomly drawing a row
of G corresponds exactly to randomly drawing a uniform vector in Fn and so the check (7)
corresponds to taking a uniformly random linear combination of the columns of X. In this
case, we recover the ‘standard’ error bound:

p ≤ 1 − d

m
= 1 − |F|n − |F|n−1

|F|n
=

1

|F|
,

where we have used the fact that the Hadamard code of message length n with field F has
block size m = |F|n and distance d = |F|n − |F|n−1, as shown in §1.3.3.

3.1.3 Reduced matrix zero check

The previous section §3.1.2 showed that we can reduce checking that a matrix is zero to
checking that a single vector is zero. We also have, from §3.1.1, a way to reduce checking
that a vector is zero to checking that a single field element is zero. The natural next step is to
join the two checks together and therefore reduce checking that a matrix is zero to checking
that a single field element is zero, with some additional error. Recalling the previous set up,
we assume that we are interested in checking that some matrix X ∈ Fk×n is zero.

Check. For this check, we introduce a second code matrix G′ ∈ Fm′×k (which will serve as
our second check’s code matrix) with distance d′ ≥ 0. The check can then be written:(

G′

(
k∑

i=1

Grixi

))
r′

= 0 =⇒
p+p′

X = 0,

where xi denotes the ith column of X, while r is uniformly randomly drawn from 1, . . . ,m
and r′ is uniformly randomly drawn from 1, . . . ,m′. Here, p ≤ 1 − d/m and p′ ≤ 1 − d′/m′
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Another way of writing this check is, letting g̃Tr denote the rth row of G and g̃′Tr′ denote the
r′th row of G′,

g̃′Tr′ Xg̃r = 0 =⇒
p+p′

X = 0. (10)

We will use this more compact statement to prove the claim.

Proof. The check is essentially also the proof of its correctness, using the notation and
implications of §1.4, along with the proofs presented previously. Starting with the left hand
side of (10)

g̃′Tr′ (Xg̃r) = 0 =⇒
p′

Xg̃r = 0,

using the basic zero check (6), where p′ ≤ 1−d′/m′ and r′ uniformly randomly selected from
1, . . . ,m′. Note that this statement is true for any r. Now, from the matrix check (8), we
know that

Xg̃r = 0 =⇒
p

X = 0,

where r is uniformly randomly selected from 1, . . . ,m. Using the chained implications of §1.4,
we therefore have that

g̃′Tr′ (Xg̃r) = 0 =⇒
p+p′

X = 0.

where r and r′ are uniformly and independently chosen from 1, . . . ,m and 1, . . . ,m′, respec-
tively, while p and p′ are as defined above, which is what we wished to prove.

Discussion. We may view the check above as a type of ‘generalized Schwartz–Zippel’
lemma [Tha22, §3.4], for arbitrary linear codes. Indeed, when the matrices G and G′ are
Reed–Solomon code matrices and every field element is an evaluation point, we may interpret
the check as exactly evaluating a bivariate polynomial, with coefficients X, at two uniformly
randomly chosen points in F. In this case, m = m′ = |F|, and, since the matrix X ∈ Fk×n,
then this means that n−1 is the max degree of the first variable and k−1 is the max degree
of the second. The bound here then says that, if the polynomial is nonzero (i.e., if X ̸= 0)
then the probability that the polynomial, evaluated at a uniformly randomly chosen point
in F2, evaluates to zero is no more than

p + p′ ≤
(

1 − d

m

)
+

(
1 − d′

m′

)
=

(n− 1) + (k − 1)

|F|
,

exactly matching the bound of Schwartz–Zippel. Here, we have used the fact that d =
m−n+ 1 for Reed–Solomon codes (and similarly for d′). Surprisingly, it is not hard to show
that this bound is loose (and therefore Schwartz–Zippel is, as well) except when the codes
are trivial, and it is possible to do better by using the fact that the codes are linear. In this
case, the bound can be improved by an additive factor of around (1−d/m)(1−d′/m′) which
is very small when d/m and d′/m′ are very close to 1. (See appendix B.3.)
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Generalization. A natural question is, of course, can we generalize this procedure from
vectors and matrices to some sort of higher-order mathematical structure? A natural idea
would be to introduce tensors and so on, but there is a slightly simpler approach which we
can explore via the Kronecker product. (See appendix B.1 for a definition.) In particular,
we may identify the k × n matrix X with a (long) vector x ∈ Fkn by stacking the columns
of X. The procedure above, performed over X, is equivalent to running the following check
over the vector x,

((G′ ⊗G)x)r′′ = 0 =⇒
p

x = 0,

where G′ ⊗ G is the Kronecker product of G and G′, and r′′ is uniformly randomly chosen
from 1, . . . ,mm′, while p ≤ 1−dd′/mm′. Indeed, this ‘equivalence’ gives us a tighter bound,
which we show in appendix B.2, than the one derived above. Of course, given any higher
order tensor of s dimensions, say, (nj) for j = 1, . . . , s, we may always ‘stack’ the tensor into
a vector x of size

∏
j nj and apply a similar procedure, given codes Gj of dimension Fmj×nj

for each j = 1, . . . , s. This leads to a ‘general check’

((G1 ⊗G2 ⊗ · · · ⊗Gs)x)r = 0 =⇒
p

x = 0,

where r is uniformly sampled from 1, . . . ,
∏

j mj, while

p ≤ 1 −
s∏

j=1

dj
mj

.

If the matrices Gj are Vandemonde matrices, where every element in the field F is an
evaluation point, then Schwartz–Zippel would imply that

p ≤
s∑

j=1

(
1 − dj

mj

)
=

∑s
j=1(nj − 1)

|F|
.

Note that nj − 1 denotes the degree of the jth variable, so the sum can be recognized as the
total degree of the s-variate polynomial. On the other hand, this bound would imply,

p ≤ 1 −
∏s

j=1(|F| − nj + 1)

|F|s
= 1 −

s∏
j=1

(
1 − nj − 1

|F|

)
.

These two values are, of course, very close if nj ≪ |F|, but the latter is always a better
bound unless nj = 1 for all but one index j.

3.1.4 Vector subspace check

Finally, we can construct the most general form of the above checks by strengthening the
procedures slightly. We may verify that the columns of a matrix X ∈ Fk×n all belong to
some vector subspace V ⊆ Fk by verifying that only one vector belongs in such a subspace.
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Check. Using the same set up as the matrix zero check §3.1.2, let xi ∈ Fk denote the ith
column of the matrix X. The subspace check may be written as follows:

Gr1x1 + · · · + Grnxn ∈ V =⇒
p

xi ∈ V for i = 1, . . . , n, (11)

where r is chosen uniformly at random from 1, . . . ,m, and p ≤ 1− d/m. In a similar way to
the previous, we may interpret this check as picking a random row of G, say g̃Tr , uniformly
over all rows, and then using this row as the coefficients of a linear combination of the
columns of X. We may equivalently write this statement as

Xg̃r ∈ V =⇒
p

X ∈ Vn, (12)

where Vn is the set of k × n matrices whose columns lie in the vector space V .

Proof. The proof follows nearly immediately from the original matrix zero check. Since V
is a vector space, we know there exists a parity check matrix C ∈ Fs×n such that y ∈ V if,
and only if, Cy = 0, from (2). Given this, consider the left hand side of (11). If this is true,
then

Gr1x1 + · · · + Grnxn ∈ V implies C(Gr1x1 + · · · + Grnxn) = 0.

We may rewrite the right hand side of this expression to:

Gr1(Cx1) + · · · + Grn(Cxn) = 0,

for any r. But, note that, if r is chosen uniformly at random from 1, . . . ,m, then, from the
matrix zero check §3.1.2, we know

Gr1(Cx1) + · · · + Grn(Cxn) = 0 =⇒
p

Cxi = 0, for i = 1, . . . , n,

where p ≤ 1 − d/m. By definition of the parity check matrix C, the right hand side of this
expression can be written

Cxi = 0 implies xi ∈ V,

for each i = 1, . . . , n. Putting it all together gives the final result:

Gr1x1 + · · · + Grnxn ∈ V =⇒
p

xi ∈ V for i = 1, . . . , n.

Discussion and extensions. We may view this check as a generalization of the matrix
zero check, which is the special case of this check when the subspace V = {0} (and therefore
one possible parity check matrix for this subspace would be C = I). We may also ask if it is
possible to extend the above check in a similar way to the reduced matrix zero check §3.1.3.
Indeed, using the check (12) and the definition of the parity check matrix C, we can write
the left hand side as

Xg̃r ∈ V if, and only if, CXg̃r = 0,
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where g̃r is the rth row of G, viewed as a column vector. Given a second code matrix
G′ ∈ Fm′×s with distance d′, we can reduce checking the right hand side of this statement,
whether CXgr = 0, to a ‘simpler’ check over a single field element, since:

g̃′Tr′ CXg̃r = 0 =⇒
p′

CXgr = 0,

where p′ ≤ 1− d′/m′ and g̃Tr′ is a uniformly randomly sampled row of G′. (This follows from
the zero check (6), using the code generated by G′.) The remainder of the check proceeds
in the same way as (11) and has total error no more than p + p′. If it is easy to efficiently
compute the matrix vector product CT g̃′r′ (it need not be, as this product may be large),
then this check may be achieved with an inner product commitment.

3.2 Sparse checks

In this section, we present what we call the sparse checks. In comparison to the previous
section §3.1, which mostly dealt with whether a vector is, say, all zero, or included in some
vector space, this section deals with notions related to the sparsity of a vector or the distance
from a vector to a vector space.

As in the previous section, we assume that G ∈ Fm×n is a matrix generating a code with
block size m, for messages of size n. We let d ≥ 0 be the distance of this code, as defined
previously. As before, this definition will be used for the remainder of the section.

3.2.1 Sparsity check

The first useful tool is the fact that we can check whether a given vector x ∈ Fk is sparse,
that is, if most of its entries are equal to zero.

Check and proof. The simplest idea is to check that a randomly chosen entry of x ∈ Fk

is zero: if this is true, then, with some probability, the vector x must be somewhat sparse.
Writing this out, we have,

xr = 0 =⇒
p

∥x∥0 ≤ q,

with probability p ≤ 1 − (q + 1)/k, where r is uniformly randomly sampled from 1, . . . , k.
To see this, note that if xr = 0 yet, ∥x∥0 > q, then x has at least q + 1 nonzero entries. The
probability we land on one of these is at least (q + 1)/k so the probability we land on none
is no more than 1 − (q + 1)/k, as given above.

If the vector x is very sparse, then q is much smaller than k and this check is unlikely to
succeed with high probability. Of course, we can simply repeat the check over a number of
uniformly randomly-chosen indices S ⊆ {1, . . . , k} of some fixed size, then

xS = 0 =⇒
p

∥x∥0 ≤ q,

with p ≤ (1 − (q + 1)/k)|S|, by a nearly identical argument. (The analysis can be made
slightly tighter by noting that S does not have repeated indices, but we usually assume that
q ≪ k.)
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Discussion. This is the same argument as the one presented in §2.1.1 except with the
notation of §1.4. The main idea here is that we may take a check that succeeds with
relatively small probability and repeat it. Assuming that the samples are uniformly random
and independent, this, of course, decreases the probability that the check fails.

Additionally, and for fun, we may combine this check with the previous zero check
of §3.1.1. If |S| = n, then, using the definition of G at the beginning of this subsection,

(GxS)r = 0 =⇒
p′

xS = 0 =⇒
p

∥x∥0 ≤ q,

with p′ ≤ 1− d/m over a uniformly chosen r from 1, . . . ,m, and S a uniform random subset
of {1, . . . , k} and p is the same as above. This means that

(GxS)r = 0 =⇒
p+p′

∥x∥0 ≤ q,

where r is chosen from 1, . . . ,m and S ⊆ {1, . . . n} are both uniformly randomly chosen.

3.2.2 Matrix sparsity check

Another simple idea is to note that we can reduce the sparsity check for a list of vectors into
a single sparsity check for a single vector. In particular, given a matrix X ∈ Fk×n, whose
columns are vectors xi ∈ Fk for i = 1, . . . , n, the following check holds:∥∥∥∥∥

k∑
i=1

Grixi

∥∥∥∥∥
0

≤ q =⇒
p

X has at most q nonzero rows,

where p = (q + 1)(1 − d/m) . Note that this implies that each vector has ∥xi∥0 ≤ q for
i = 1, . . . , k, but is, in general, a stronger statement. For example, this implies something
roughly like: either all vectors are extremely sparse, or their nonzero entries are aligned.

Proof. We will give a simple bound on the probability that the inequality fails. In partic-
ular, given some X with at least q + 1 nonzero rows, we need to show that the probability
that ∥∥∥∥∥

k∑
i=1

Grixi

∥∥∥∥∥
0

≤ q (13)

is small, for a uniformly randomly chosen r (from 1, . . . ,m). To see this, we will reduce the
matrix sparsity check to the zero check provided in §3.1.1.

First, consider the expression in (13). We may remove rows of X to get some shorter
matrix X̂. Note that ∥∥∥∥∥

k∑
i=1

Grix̂i

∥∥∥∥∥
0

≤

∥∥∥∥∥
k∑

i=1

Grixi

∥∥∥∥∥
0

,
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for any choice of r, where x̂i denotes the ith column of the shorter matrix X̂. So, the
probability that the event (13) happens is at most the probability that the event∥∥∥∥∥

k∑
i=1

Grix̂i

∥∥∥∥∥
0

≤ q,

happens over a uniform choice of r from 1, . . . ,m.
Now, let X have more than q nonzero rows. We may pick any q + 1 nonzero rows of X

to get the matrix X̂ ∈ F(q+1)×k. Since every row of X̂ is nonzero, if∥∥∥∥∥
k∑

i=1

Grix̂i

∥∥∥∥∥
0

≤ q,

then there is at least one row of X̂, say x̃T
j , which satisfies

(Gx̃j)r = 0.

Of course, this happens with probability at most 1 − d/m by the zero check in (5). Finally,
since there are q + 1 possible choices of rows, we have that

p ≤ (q + 1)

(
1 − d

m

)
,

by the union bound, as required.

Discussion. While likely not very useful by itself, we can think of this particular check as
a type of ‘lemma’ which we can strengthen slightly to be part of the following check: the
subspace distance check.

3.2.3 Subspace distance check

An important consequence of the sparsity check above is the ability to check that a matrix
X ∈ Fk×n has columns close to a vector subspace V ⊆ Fk, by reducing this to checking only
that a single vector is close to the subspace V .

Definitions. For this check, we have to introduce a few more definitions, similar in spirit
to the previous ones. First, we will define the distance of a subspace V as

d′ = min
x∈V \{0}

∥x∥0.

(Note that this is the definition of distance of a code G whenever V = R(G) and G is
injective.) Now, we define what it means for a matrix X to be q-close to a vector subspace
V . Let Y be any matrix whose columns lie in V , then we say X is q-close to V if there
exists some matrix Y , meeting the above conditions, such that X−Y has at most q nonzero
rows. Conversely, we say X is q-far from V if, for every matrix Y with columns in V , the
difference X − Y has at least q nonzero rows.
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Check. We can now state the subspace distance check : let q < d′/2 then∥∥∥∥∥
n∑

i=1

Grixi − V

∥∥∥∥∥
0

≤ q =⇒
p

X is q-close to V , (14)

where p ≤ (q + 1)(1 − d/m). We leave the general case of this check as an open conjecture,
proving only the special case of n = 2 and q < d′/4 below, which we use later in this paper.

We note that this conjecture, in particular, generalizes some of the work from [AHIV17],
which shows the special case where G is the Hadamard code (see §1.3.3) and q < d′/3, with
the same probability of error. (This work was extended for a different code G, with slightly
higher error probability, in [DP23].) In the special case that V is the subspace generated by
Reed–Solomon codes, the bound is slightly improved to q < d′/2, but the probability p is
slightly different [BCI+23]. We show the ‘easy’ part of the general proof in appendix C.1,
but leave the second part of this proof as an open conjecture we call the distance-preserving
encoding conjecture. See the appendix C.2 for more details.

Proof outline. As mentioned previously, we provide a proof of the special case where
n = 2 and q < d′/4, which we use in the next section to generalize the FRI protocol and
provide a simple proof of its security. Let

R = {r ∈ {1, . . . ,m} | ∥Xgr − V ∥0 ≤ q}.

In other words, R is the set of indices at which the left hand side of the check (14) passes, and
|R|/m is the probability that the check indeed passes (independent of whether X is q-close
to V ). We will break the proof up into two cases. First, we will show that, if |R| > m − d
(equivalently, if the probability that the left hand side of the check is true is greater than
1 − d/m), then for all z ∈ F2 we have

∥Xz − V ∥0 ≤ 2q < d′/2.

That is, there is no linear combination of columns of X which can certify that the matrix X is
more than d′/2-far from V . (The remaining case, if |R| ≤ m−d, would mean we are done by
definition.) We will then show that, if this is true, then the check given in (14) is correct with
high probability. It is interesting that, at a very high level, the structure of the proof given
here is similar to that of [AHIV17], but the mechanics of the actual proof are surprisingly
different. We share more notes on the similarities (and differences) in appendix C.2.

Proof, part one. Since, by assumption, |R| > m − d, this means that at least two rows
with indices r, r′ ∈ R, are linearly independent. To see this, assume the contrary. Let g̃r be
a nonzero row of G for r ∈ R, and, by assumption, for each other row, g̃r′ with r′ ∈ R, there
exists some α, β, not both zero, such that αg̃r + βg̃r′ = 0. Let x ∈ F2 be a nonzero vector
satisfying g̃Tr x = 0, then we also have that g̃Tr′x = 0. This would, in turn, imply that Gx is
zero at more than m− d indices, so the distance of G must be smaller than d, contradicting

24



the assumption. Now, let g̃r and g̃′r be two linearly independent rows, with r, r′ ∈ R, then,
for any α, β ∈ F, we have

∥X(αg̃r + βg̃r′) − V ∥0 ≤ ∥Xg̃r − V ∥0 + ∥Xg̃r′ − V ∥0 ≤ 2q.

But since g̃r and g̃r′ are linearly independent, then every vector z ∈ F2 can be written as a
linear combination of these two vectors, z = αgr + βgr′ for some α, β ∈ F. This means that
every vector z ∈ F2 has

∥Xz − V ∥0 ≤ 2q,

whenever |R| > m− d.

Proof, part two. Now, if |R| > m− d, we will show that the current check reduces to the
matrix sparsity check, which would show that p ≤ |R|/m ≤ (q + 1)(1 − d/m) if X is more
than q-far from V , as required. From the assumption that |R| > m− d and part one of the
proof, we know that for any z ∈ F2, we have

∥Xz − V ∥0 ≤ 2q. (15)

Since we know that q < d′/4, then we may write the columns of X, x1 and x2, uniquely as

xi = yi + ξi,

where yi ∈ V and ∥ξi∥0 ≤ 2q, using the fact any linear combination of the columns of X is
a distance of at most 2q from V , see (15), and 2q < d′/2, so we are in the unique decoding
radius; i.e., there is only one possible yi ∈ V and ξi which satisfy this property. Of course,
note that, since yi ∈ V , then any linear combination of these vectors is also in V . This
means:

∥Xz − V ∥0 = ∥z1(y1 + ξ1) + z2(y2 + ξ2) − V ∥0 = ∥z1ξ1 + z2ξ2 − V ∥.
So it suffices to consider only the latter quantity.

As before, let R denote the set of indices 1, . . . ,m over which the left hand side of the
check (14) is true (independent of the right hand side). Using the above, this is the same as
defining R as

R = {r ∈ {1, . . . ,m} | ∥Gr1ξ1 + Gr2ξ2 − V ∥0 ≤ q}.
For each r, we have a corresponding unique ȳr ∈ V such that

∥Gr1ξ1 + Gr2ξ2 − ȳr∥0 ≤ q, (16)

as q < d′/4. Now, consider any pair r, r′ ∈ R and note that, by definition

∥Gr1ξ1 + Gr2ξ2 − ȳr∥0 ≤ q and ∥Gr′1ξ1 + Gr′2ξ2 − ȳr′∥0 ≤ q.

Since scaling any vector by any constant does not increase the distance, we scale the first
term by Gr′1 and the second by Gr1 respectively. This gives:

∥Gr′1(Gr1ξ1 + Gr2ξ2 − ȳr)∥0 ≤ q and ∥Gr1(Gr′1ξ1 + Gr′2ξ2 − ȳr′)∥0 ≤ q.
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Adding both of these terms and using the triangle inequality gives:

∥(Gr′1Gr2 −Gr1Gr′2)ξ2 − (Gr′1ȳr −Gr1ȳr′)∥0 ≤ 2q.

Applying the reverse triangle inequality to the terms above gives the following claim about
ȳr and ȳr′ ,

∥Gr′1ȳr −Gr1ȳr′∥0 ≤ 2q + ∥(Gr′1Gr2 −Gr1Gr′2)ξ2∥0 ≤ 4q < d′.

So, since V has distance d′ we must have that the two vectors are equal; i.e.,

Gr′1ȳr = Gr1ȳr′ .

Repeating this argument, but multiplying the inequalities with Gr2 and Gr′2 instead, gives

Gr′2ȳr = Gr2ȳr′ .

so, in particular, we may take a linear combination of these two equalities; i.e., for any s ∈ F
we have

(Gr′1 + sGr′2)ȳr = (Gr1 + sGr2)ȳr′ . (17)

Now, either for all r ∈ R we have that ȳr = 0 or there is at least one r̂ ∈ R such that ȳr̂ ̸= 0.
In the former case, this is the same as saying, from (16),

∥Gr1ξ1 + Gr2ξ2∥0 ≤ q,

for all r ∈ R. From the matrix sparsity check presented in §3.2.2, if this is true, then, since
ξi = xi − yi,

∥Gr1ξ1 + Gr2ξ2∥0 ≤ q =⇒
p

X − Y has at most q nonzero rows,

where Y ∈ Fk×2 is the matrix with columns y1 and y2. Equivalently, if X−Y has more than
q nonzero rows, then |R|/m ≤ (q + 1)(1 − d/m).

We will show that the remaining case, where some ȳr̂ ̸= 0, is impossible. Let r̂ ∈ R be
an index such that ȳr̂ ̸= 0, and let r ∈ R be any other index. Set s ∈ F in (17) such that

Gr̂1 + sGr̂2 = 0.

Using the equality (17), every r ∈ R must satisfy

(Gr1 + sGr2)ȳr̂ = (Gr̂1 + sGr̂2)ȳr = 0,

but, since ȳr̂ ̸= 0, then Gr1 + sGr2 = 0 for every r ∈ R. But, from the beginning of this
section, we have assumed that |R| > m − d, so the distance of G is at most m − |R| < d,
which contradicts our assumption on the distance of G.
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4 A distance check protocol

We will use some of the checks presented above to present a protocol that successively re-
duces checking that some (potentially very large) vector is close to a subspace, to checking
that an appropriately-chosen smaller vector is close to a vector subspace. This construction
is essentially a linear-algebraic generalization of the Fast Reed–Solomon Interactive Oracle
Proof of Proximity [BBHR18] (also called FRI) to vector spaces with certain recursive sub-
structure. Along the way, we will give basic bounds on its probability of error and give a way
of practically implementing the protocol, along with some basic query complexity bounds.

4.1 A basic reduction

In the simple protocol, we would like to reduce checking that a particular vector y is close
to some vector subspace V ⊆ Fn to the fact that it is close to a (smaller) vector subspace
V ′ ⊆ Fk. We will start first with the ‘exact inclusion’ case (i.e., checking that y ∈ V ), which
is easier to write, and then develop the ‘distance check’ (i.e., whether ∥y − V ∥0 is not too
large) as a generalization.

Set up. We will assume that the vector space V has the following recursive substructure:

V = T1V
′ ⊕ T2V

′ ⊕ · · · ⊕ TℓV
′,

where Ti ∈ Fn×k are some given matrices. Here, ⊕ denotes the fact that V is a direct sum
of the indicated subspaces (as defined in §1.1), and we have defined, for i = 1, . . . , ℓ,

TiV
′ = {Tix | x ∈ V ′},

which will be very convenient notation in what follows. This implies that any vector y ∈ V
can be written uniquely as

y =
ℓ∑

i=1

Tixi,

where xi ∈ V ′. (This is, roughly speaking, saying that V has some sort of recursive substruc-
ture; examples include the fact that F2k ∼ Fk × Fk among others.) Similar to the previous
section, we will assume that we are given some matrix G ∈ Fm×n that generates a code with
distance d, and a matrix G′ ∈ Fm′×k that generates a code with distance d′.

Aside. While this substructure may seem like a very strong requirement, we note that it
always exists for any vector space V . If, for example, V is of even dimension, say 2k for
some k, then there exists a matrix A ∈ Fn×2k such that R(A) = V . In this case, we define
the matrices T1, T2 ∈ Fn×k such that

A =
[
T1 T2

]
,
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and V ′ = Fk. (That is, the matrix T1 contains the first k columns of A, while the matrix T2

contains the last k columns.) This would then show that

V = T1V
′ ⊕ T2V

′.

Note that we do not require the matrices Ti to be injective, so a similar argument would work
for cases where the dimension of V is odd. Of course, in many cases, much more structure
can be exploited, but this varies on a case-by-case basis.

4.1.1 Exact inclusion reduction

Indeed, we may reduce the claim of checking that y ∈ V to the (hopefully easier) single
claim of checking that a single element is in the smaller vector space V ′. To do this, note
that y ∈ V if, and only if, there exist xi ∈ V ′ such that

y =
ℓ∑

i=1

Tixi. (18)

In other words, to verify that y ∈ V , it suffices to be given xi ∈ Fk, verify that xi ∈ V ′

for each i = 1, . . . , ℓ, and verify that (18) holds. Consider the claims in reverse order.
Claim (18) can be verified by using a zero check (§3.1.1); i.e., letting g̃Tr denote a uniformly
chosen random row of G,

g̃Tr y =
ℓ∑

i=1

g̃Tr Tixi =⇒
p

y =
ℓ∑

i=1

Tixi,

where p ≤ 1 − d/m. Similarly, we may reduce the first claim of verifying that xi ∈ V ′ for
each i to verifying a single inclusion via the vector subspace check of §3.1.4:

ℓ∑
i=1

G′
r′ixi ∈ V ′ =⇒

p′
xi ∈ V ′, for i = 1, . . . , ℓ.

Here, as shown in the check, p′ ≤ 1 − d′/m′ and r′ is uniformly randomly chosen from
1, . . . ,m′. Combining these two statements gives the final result.

Discussion. In a sense, all we are doing is exploiting the structure we assumed about the
space V to reduce checking whether y ∈ V , to (a) checking whether y is equal to some linear
combination of vectors, and (b) checking whether these individual vectors are each in the
smaller subspace V ′. The former we may perform via a zero check, while the latter we may
perform via a vector subspace check. If both of these checks are cheaper to perform than
the original, then, in a sense, we have reduced the problem to a simpler one.

On the other hand, unless we have some interesting cryptographic primitives (such as
homomorphic inner product commitments [BCC+16], e.g.), it is not immediately clear how
to make this protocol practically useful. To this end, we generalize this basic building block
to the distance check, which will, in turn, yield a practical protocol.
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4.1.2 Distance reduction

In this check, we will attempt to show that the provided vector y is not too far away from
V ⊆ Fn. Because of this, the exact choice of basis Ti ∈ Fn×k matters.

Basis alignment. To this end, we will define a notion of alignment for the basis T1, . . . , Tℓ,
as follows. We say the Ti are basis aligned if, given any X ∈ Fk×ℓ, a matrix with columns
xi, that is q-close to V , we have that

∥T1x1 + · · · + Tℓxℓ − V ∥0 ≤ q′,

for some fixed q′. (We must specify the q and q′ in the definition, of course.) The inter-
pretation of this statement is that, if the at-most-q ‘errors’ in the columns of X are aligned
(where ‘errors’ are the number of indices where at least one column of X differs from any
closest vector in V ′), then the total number of errors over the larger vector space must be
similarly small; i.e., at most q′.

While this seems like a strong restriction, we note that just the sparsity of the matrices
Ti would imply this claim. For example, if the matrices Ti are diagonal, we would have that
q′ ≤ q, or, if each Ti is nonzero in at most two rows, and the Ti all have the same sparsity
pattern, we would have that q′ ≤ 2q, and so on. We use this fact in the protocol presented
below and provide a simple proof along with some basic conditions in appendix D.

Reduction. Given a set of matrices Ti which are basis aligned in the sense above (and
using the same notation q and q′ as defined above), then note that, if X is q-close to V , and

∥y − (T1x1 + · · · + Tℓxℓ)∥0 ≤ q′′, (19)

then
∥y − V ∥0 ≤ q′ + q′′,

via the triangle inequality. To test the first claim (that X is q-close to V ), we may apply the
subspace distance check of §3.2.3, while the second (19), can be tested via the sparsity check
of §3.2.1; both combined imply that the original vector y is indeed close to V . To write this
out explicitly, first set

ỹ = T1x1 + · · · + Tℓxℓ, (20)

for notational convenience. Then, assuming the conjecture of §3.2.3 holds for general codes
G ∈ Fm×ℓ with distance d, we have

∥Gr1x1 + · · · + Grℓxℓ − V ′∥0 ≤ q =⇒
p

X is q-close to V ′,

where p ≤ (q + 1)(1 − d/m) and r is uniformly sampled from 1, . . . ,m. We also have that

yS = ỹS =⇒
p′

∥y − ỹ∥0 ≤ q′′,
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where S ⊆ {1, . . . , n} is uniformly randomly sampled, while p′ ≤ (1 − (q′′ + 1)/n)|S|. Com-
bining these two statements, we have that

yS = ỹS and ∥Gr1x1 + · · · + Grℓxℓ − V ′∥0 ≤ q =⇒
p+p′

∥y − V ∥0 ≤ q′ + q′′.

Here, as before, we have that S ⊆ {1, . . . , n} is uniformly randomly sampled, r is uniformly
sampled from 1, . . . ,m, and ỹ is as defined in (20), while p ≤ (q + 1)(1 − d/m) and p′ ≤
(1 − (q′′ + 1)/n)|S|. Note, again, that this is just the natural generalization of the reduction
presented previously in §4.1.1, except where we care about proximity rather than exact
inclusion into the vector space.

Discussion. At a high level, we have just reduced checking that a potentially very large
vector y is close to a vector space to checking that (a) two vectors are close to each other
(via random sampling) and (b) that a linear combination of much smaller vectors is close
to some subspace V ′. If this subspace also has a similar recursive substructure; i.e., if there
exist matrices T ′

i and a subspace V ′′ such that

V ′ = T ′
1V

′′ ⊕ · · · ⊕ T ′
sV

′′,

then, instead of directly checking that

∥Gr1x1 + · · · + Grℓxℓ − V ′∥0 ≤ q,

we may set y′ = Gr1x1 + · · · + Grℓxℓ and repeat the above procedure again, except over y′

and V ′, making the appropriate replacements.
Unfortunately, the general reduction presented prior to this discussion paragraph depends

on the unsolved conjecture of §3.2.3 (though special cases have been solved). In what follows,
we will use the special case where ℓ = 2, shown earlier, to construct a linear-algebraic
generalization of the FRI protocol, along with its security proof.

4.2 The FRI protocol

In this section we will, using the statements above, present a small generalization of the FRI
protocol along with a proof of its security.

Set up. In FRI, we have the following construction: ℓ = 2 and the matrices T1, T2 ∈ Fn×n

are the identity (T1 = I) and diagonal, respectively. (We will define T2 in what follows.)
In this scenario, the vector space V is the set of evaluations of polynomials of degree

≤ s at some fixed set of points {α1, . . . , αn} ⊆ Fn. (This forms a vector space by the same
reasoning as §1.1.) The ‘smaller’ vector space V ′ is the set of evaluations of polynomials
of degree ≤ s with only even-degree terms, over the same set of fixed points. (This is a
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vector space, as summing two polynomials with only even-degree terms results in another
polynomial with terms of only even degree, as does scaling these polynomials.) Setting

T2 =


α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αn

 ,

we may then write
V = T1V

′ ⊕ T2V
′.

This decomposition has the following interpretation: we may decompose the vector space of
polynomials of degree ≤ s into two parts: the set of polynomials of degree ≤ s with only
even-degree terms, and the set of polynomials of degree ≤ s with only odd-degree terms.
(The latter, of course, is just the set of polynomials with only even-degree terms, multiplied
pointwise by the polynomial f(β) = β.)

Squared evaluations. It is worth noticing that, since β2 = (−β)2 for any β ∈ F, in
many cases, the set of squared evaluation points, {α2

i }, is much smaller than the set of all
evaluation points {αi}. (If the {αi} form a subfield of F, it is about half, unless F is a binary
field.) In fact, if the evaluation points are chosen such that αi+n/2 = −αi for i = 1, . . . , n/2,
then the number of unique evaluation points is halved, and we may assume that V ′ ⊆ Fn/2.
In this case, we may write the decomposition with the following matrices:

T1 =

[
I
I

]
, T2 =

[
D
−D

]
,

where D = diag(α1, . . . , αn/2) and T1, T2 ∈ Fn×(n/2), where V ′ is the set of all evaluations
of polynomials (of degree ≤ s) at the points {α2

i } for i = 1, . . . , n/2. This gives yet another
way of writing

V = T1V
′ ⊕ T2V

′.

Note that these matrices are aligned in that, letting the matrix [x1 x2] be q-close to V ′, then

∥T1x1 + T2x2 − V ∥0 ≤ 2q,

so, in the notation above, we have q′ = 2q.

Reduction step. From here it is easy to (a) read off the algorithm for reducing the queries
to a smaller subspace, given the prior discussion, and (b) to read off its probability of error.
From the previous discussion in §4.1.2, we know

∥Gr1x1 + Gr2x2 − V ′∥0 ≤ q and yS = (T1x1 + T2x2)S =⇒
p+p′

∥y − V ∥0 ≤ 3q,

over uniformly randomly chosen r = 1, . . . ,m and S ⊆ {1, . . . , n}, where p ≤ (q+1)(1−d/m)
and p′ ≤ (1 − (q + 1)/n)|S|, and we have used the fact that q′ = 2q, so q + q′ = 3q.

31



Complete reduction. At a high level, we may view the above check as: we begin by
wishing to check that some vector is q-close to a subspace (of whatever dimension) embedded
in Fn. We then reduce this to checking that some other vector is in a subspace of Fn/2, while
incurring some additional error term p + p′ (as given above) by doing so. We may continue
to perform this procedure, say, k times, until we are left with verifying that some vector,
embedded in Fn/2k , lies in a subspace. (We assume n is divisible by 2k in what follows.)
If n/2k is small, then every subspace must be similarly ‘small’, and it suffices to simply
directly verify that this last vector is part of the subspace directly. If so, this will imply that
the original vector (embedded in the ‘large’ vector space Fn) must be similarly close to the
original vector space V with high probability, controlled by the above terms, which is what
we desired to check in the first place.

Now, consider the first ‘step’ of the protocol. In order to have that y is 3q-close to V , we
must have that

∥Gr1x1 + Gr2x2 − V ′∥0 ≤ q and ∥y − (T1x1 + T2x2)∥ ≤ q,

with high probability. If we then set

y′ = Gr1x1 + Gr2x2,

then, to guarantee that y′ is q-close to V ′ = T ′
1V

′′ ⊕ T ′
2V

′′ (i.e., to guarantee the left hand
side of the first step) we must have that

∥Gr1x
′
1 + Gr2x

′
2 − V ′′∥0 ≤ q/3 and ∥y′ − (T ′

1x
′
1 + T ′

2x
′
2)∥ ≤ q/3,

with high probability. Repeating this process, we see that at the kth round, we must have
that both queries must ensure that the respective vectors are no more than q/3k-far from
the vector space. By some basic accounting, using the implications of §1.4, it is not hard to
show that the probability of error is at most

k∑
i=1

( q

3i
+ 1
)(

1 − d

m

)
+

k∑
i=1

(
1 − q/3i + 1

n/2i

)|Si|

,

where |Si| is the size of the randomly drawn subset for round i. The first term in this sum
is easily bounded from above since

k∑
i=1

( q

3i
+ 1
)
≤ 3

2
q + k.

The second term is slightly trickier, but, since log(1 − λ) ≤ −λ for 0 ≤ λ < 1, then for any
nonnegative γ,

(1 − λ)γ ≤ exp(−γλ),

which means that the right-hand-term, inside of the sum, is bounded above by(
1 − q/3i + 1

n/2i

)|Si|

≤ exp

(
− q

n

(
2

3

)i

|Si|

)
.
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Setting |Si| = η(3/2)i, for some η ≥ 0 to be established, simplifies the expression slightly to

k∑
i=1

(
1 − q/3i + 1

n/2i

)|Si|

≤ k exp
(
−η

q

n

)
,

which means the probability of error is bounded above by(
3

2
q + k

)(
1 − d

m

)
+ k exp

(
−η

q

n

)
.

Concrete instance. The parameters presented above are relatively abstract. If we set G
to be the matrix whose rows are all of the pairs (1, α) for each α ∈ F (as in the original FRI
protocol [BBHR18]) we know that 1 − d/m = 1/|F|, from §1.3.2. We may similarly choose
q to be, say, q = n/8. If the field size is relatively large compared to n (we will say that
n = 232 for this instance and the field size is, say |F| ≈ 2128) then, to have an error of around
2−80 after k = 28 rounds, we must have

k exp
(
−η

8

)
≤ 2−80,

which means that we may set η = 470. This gives a total error probability of slightly above
2−80.

Query complexity. In this model, the number of queries that must be made to either the
vector y or its constituents x1 or x2 at round i is given by |Si| = η(3/2)i. This means that
the total number of queries is

k∑
i=1

|Si| = 2η

((
3

2

)k+1

− 1

)
.

With the provided parameters, the total number of queries is then ∼ 226, which is much
smaller than näıvely querying all n− q ≈ 232 possible entries to verify the claim. Indeed, it
is not hard to show that, if n/2k remains constant, along with all of the other parameters,
then, as n grows, this difference becomes arbitrarily large. (This is easy to see: the query
complexity grows as (3/2)k log(k) whereas the message size grows as 2k, which marks an
exponential(!) gap between the two as k, or, equivalently, n, becomes large. Some care has
to be taken as n becomes roughly the size of the field, but we usually assume n ≪ |F|.)

Optimizing constants. Note that, in the above construction, we did not make use of
the freedom that many parameters, such as the distances between different elements, could
be arbitrarily chosen. Indeed, we did not optimize for any constants at all, and, using
the bounds presented here, the proof system would be unlikely to be useful for practical
applications. We suspect that using the framework presented here, but with much more
careful accounting, it is possible to achieve similar constants as those derived by directly
analyzing the protocols [BBHR18].
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5 Conclusion

In this paper, we have shown that a number of the basic tools used in succinct proof systems
may be recast, almost entirely, in terms of linear algebra and error correcting codes. This
continues a long line of tradition in the cryptography space which attempts to separate
out and individually consider the components which make up a succinct proof system. For
example, it was possible to mostly elide the use of cryptography by pushing most of the
cryptographic complexity into the models of §2.1.2. Focusing on just the reductions used
here then leads to a clean abstraction which may be considered in its own right. Indeed,
an interesting consequence of this line of work is that it suggests natural generalizations of
known statements, leading to, say, the conjecture provided in §3.2.3. In a certain sense,
this work also suggests the following high level idea: one may, in many cases, replace a very
specific notion of randomness (such as, say, random linear combinations) with the much more
structured ‘randomness’ coming from rows of the generator matrix for an error correcting
code of large distance. In many ways, the main point of this paper is to show that even
this notion of randomness not only preserves most ‘natural’ properties of objects in vector
spaces, but indeed serves as a way of verifying these properties.
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A Chaining probabilistic implications

Given two statements Pr =⇒
p

Qr′ and Qr′ =⇒
p′

Tr′′ , we will show that

Pr =⇒
p+p′

Tr′′ .

where the randomness is, as before, over r, r′, and r′′, with no assumptions on their depen-
dence. Using the definitions for the given notation, this claim may be written as, knowing

Pr(Pr ∧ ¬Qr′) ≤ p, and Pr(Qr′ ∧ ¬Tr′′) ≤ p′

implies that
Pr(Pr ∧ ¬Tr′′) ≤ p + p′.

Proof. To see this, we may use basic logical implications. Note that, for any r, r′, and r′′,
the following implications are true

Pr ∧ ¬Tr′′ implies (Pr ∧ ¬Qr′) ∨ (Qr′ ∧ ¬Tr′′).

This follows from the fact that Pr and ¬Tr′′ . Since Qr′ is either true or false, and both of
the previous statements are true, then, necessarily, one of the statements in the disjunction
must be true. Since this is true for any r, r′, and r′′, we then have that

Pr(Pr ∧ ¬Tr′′) ≤ Pr((Pr ∧ ¬Qr′) ∨ (Qr′ ∧ ¬Tr′′)) ≤ Pr(Pr ∧ ¬Qr′) + Pr(Qr′ ∧ ¬Tr′′),

where the last inequality follows from the union bound. Using the definitions in the statement
of the claim above gives the result.

B Kronecker product of codes

B.1 Kronecker product

Given two matrices G ∈ Fm×n and G′ ∈ Fm′×k, we define their Kronecker product, written
G′ ⊗G ∈ Fmm′×nk, as

G′ ⊗G =

 G′
11G . . . G′

1kG
...

. . .
...

G′
m′1G . . . G′

m′kG

 .

This definition may be interpreted in a number of ways. The simplest, perhaps, is to note
that, for a list of vectors x1, . . . , xk ∈ Fn, not all zero, then

(G′ ⊗G)

x1
...
xk

 = vec(G′XTGT ), (21)
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where vec(G′XTGT ) is a vector corresponding to stacking the columns of G′XTGT into one
large vector, while

X =
[
x1 x2 . . . xk

]
,

is a matrix with columns xi for i = 1, . . . , k. If the matrices G and G′ define codes, we may
view the right hand side of (21) as performing the following series of steps. First, we encode
the columns of X using G, giving a big matrix GX. Then, we take the transpose of this
matrix and encode its columns, using G′, i.e., G′(GX)T = G′XTG. (Equivalently, this is
just encoding the rows of GX to get a new matrix (GX)G′T and taking the transpose of the
result.) Finally, we stack the columns of the resulting matrix G′XTGT into one large vector,
which gives the final result.

Tensor interpretation. In a certain sense, this may be viewed as the natural ‘structure
preserving map’ which takes operations on tensors and maps them to corresponding opera-
tions on vectors. Specifically, given a matrix X ∈ Fn×k, which may be viewed as a rank 2
tensor, there is an invertible linear map X → vec(X) which gives a ‘vector’ element Fnk.
(There are many such maps; here, we take a simple one, which is just stacking the columns
of X into one large vector.) Applying linear operations to the matrix X then corresponds
to a linear operation on vec(X). In the case that these operations are ‘axis’ aligned, i.e.,
that these linear operations only apply column-wise or row-wise on X, then the Kronecker
product of the operators (in the tensor space, which deals with the matrix X) is the corre-
sponding linear operator in the vector representation (which deals with the vector vec(X)).
It is not hard to see that this generalizes to arbitrary-rank tensors, though we do not show
this here.

B.2 Kronecker product distance

Given two codes G ∈ Fm×n and G′ ∈ Fm′×k with distance d and d′, respectively, we will
show that the distance of the Kronecker product G′ ⊗ G ∈ Fmm′×nk is at least dd′. To see
this, we will use a simple counting argument. Consider a list of vectors x1, . . . , xk ∈ Fn, not
all zero, then

(G′ ⊗G)

x1
...
xk

 = vec(G′XTGT ), (22)

where vec(G′XTGT ) is a vector corresponding to stacking the columns of G′XTGT , while

X =
[
x1 x2 . . . xk

]
,

is a matrix with columns xi for i = 1, . . . , k. Since ∥vec(G′XTGT )∥0 is just the number
of nonzero entries of the matrix G′XTGT , we will only consider the latter object. Defining
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X̃ = XTGT , we can then rewrite G′XTGT as

G′XTGT = G′X̃ = G′

(Gx1)
T

...
(Gxk)T

 .

Since at least one index i has xi ̸= 0, then, at least d columns of X̃ will be nonzero, since
the distance of G is d by assumption. This implies that each of the (at least) d nonzero
columns of X̃ will be encoded into a vector of weight at least d′, since G′ has distance d′,
which means that we have at least dd′ nonzero entries in G′XTGT ; or, in other words, that
the distance of G′ ⊗G is at least dd′.

B.3 Tightness

The derivation presented in the reduced matrix zero check §3.1.3 is strictly weaker than the
one above as it does not use the linearity properties of the encoding. We show that the
bound on the probability of failure derived there, which is

1 − d

m
+ 1 − d′

m′ ,

(using the same m and m′ and d, d′ as above) is essentially always worse than the bound
derived here, of

1 − dd′

mm′ . (23)

To see this, note that (
1 − d

m

)(
1 − d′

m′

)
≥ 0, (24)

which, after rearranging, implies that

1 − d

m
+ 1 − d′

m′ ≥ 1 − dd′

mm′ .

Whenever the quantity in the left hand side of (24) is positive, which always true unless
d = m or d = m′, the latter quantity holds strictly. In general, we find that chained
implications yield much simpler proofs at the expense of some potential error. (Roughly
speaking: chained implications assume that the worst-case errors are disjoint, since the
argument used is a union-bound one. This is not true, e.g., in the case of linear codes, from
the proof above.) It is of course, not hard to show that (23) is the best we can hope for
since, given x ∈ Fn which has Gx with weight d and x′ ∈ Fk which has G′x′ with weight d′,
then x′ ⊗ x ∈ Fnk will result in a codeword

(G′ ⊗G)(x′ ⊗ x) = (G′x′) ⊗ (Gx),
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with weight dd′. (The equality follows from the definition (22), as does the weight.) It is not
hard to show that the matrix X with vec(X) = x′ ⊗ x is given by

X = xx′T ,

which gives the result.

C Subspace distance check

This appendix section contains some notes on the subspace distance check and the associated
distance-preserving encoding conjecture. We use the same definitions and notation as §3.2.3
for the remainder of this appendix section. As a reminder, we are attempting to check if
some matrix X ∈ Fk×n has columns that are q-close to some vector subspace V ⊆ Fk whose
distance is at least d′, given some code matrix G ∈ Fm×n with distance at least d. We assume
that q < d′/2 and rewrite the check below for convenience:∥∥∥∥∥

n∑
i=1

Grixi − V

∥∥∥∥∥
0

≤ q =⇒
p

X is q-close to V , (25)

where the randomness is over r uniformly randomly chosen from 1, . . . ,m, and the error
probability p ≤ (q + 1)(1 − d/m). This, as before, may be viewed as a generalization of
the Ligero distance check [AHIV17] to the case where the randomness is not provided by a
uniformly random vector in Fn, but is instead a uniformly randomly chosen row of a code
generator matrix G.

C.1 Easy case

We may split the proof of the check presented in the paper into two cases. In the first, we
assume that X is less than d′/2-far from the vector space V ; that is, there exists a matrix
Y ∈ Fk×n, with columns in V such that X − Y has less than d′/2 nonzero rows. (This is
the part of the proof we present below.) In the second case, we assume that X is at least
d′/2-far from V . This means that, for any matrix Y whose columns lie in V , the matrix
X − Y has at least d′/2 nonzero rows. (In a certain sense, that the columns of X are ‘far’
from the vector space V .)

First case proof. This part assumes that X is less than d′/2-far from V . This means that
there exists a matrix Y such that its columns yi lie in V , yi ∈ V , and X − Y has less than
d′/2 nonzero rows. First, set

ȳr =
n∑

i=1

Griyi, (26)
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for each r = 1, . . . ,m. We will show that this is the unique closest vector in the subspace V
to the left hand side of the claim (25):

x̄r =
m∑
i=1

Grixi, (27)

where xi is the ith column of X. This is not hard to see: since X − Y has less than d′/2
nonzero rows, then any linear combination of the columns of X−Y must have less than d′/2
nonzero entries; i.e., ∥∥∥∥∥

m∑
i=1

Gri(xi − yi)

∥∥∥∥∥
0

< d′/2,

but the term inside of the norm can be split into∥∥∥∥∥
m∑
i=1

Grixi −
m∑
i=1

Griyi

∥∥∥∥∥
0

< d′/2,

where the second sum can be recognized as ȳr ∈ V . Since the distance of V is at least d′,
then this vector is within the unique decoding radius and is therefore the unique vector in
V closest to x̄r; i.e., for any choice of r,∥∥∥∥∥

m∑
i=1

Grixi − V

∥∥∥∥∥
0

=

∥∥∥∥∥
m∑
i=1

Gri(xi − yi)

∥∥∥∥∥
0

.

Armed with this fact, if ∥∥∥∥∥
m∑
i=1

Grixi − V

∥∥∥∥∥
0

≤ q,

then ∥∥∥∥∥
m∑
i=1

Gri(xi − yi)

∥∥∥∥∥
0

=

∥∥∥∥∥
m∑
i=1

Grixi − V

∥∥∥∥∥
0

≤ q.

But, from the folded sparsity check above, we have that∥∥∥∥∥
m∑
i=1

Gri(xi − yi)

∥∥∥∥∥
0

≤ q =⇒
p

X − Y has at most q nonzero rows,

with p ≤ (q + 1)(1 − d/m) when r is uniformly randomly selected from 1, . . . ,m. In other
words, that X − Y have at most q nonzero rows, or, alternatively that X is q-close to V , as
required.
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Strengthening this proof. Wootters [Woo23] proved a slightly stronger version of this
case in private communication: instead of assuming that X is less than d′/2-far from V , it
suffices to assume that X is less than (d′−q)-far from V , which is at least as good (and often
much better) than the original proof, as q < d′/2 by assumption. Similar to the previous,
we let Y be a matrix whose columns lie in V and X − Y has at most d′ − q nonzero rows.
The proof is very similar to the above and we reproduce it here for completeness, using the
same notation and definitions given above.

Let the left hand side of (25) be satisfied, i.e.,∥∥∥∥∥
n∑

i=1

Grixi − V

∥∥∥∥∥
0

≤ q,

then we will show that the unique vector closest to the linear combination of the columns of
X above is ȳr, as defined in (26). To see this, let y ∈ V be any vector in the subspace, then,
if y ̸= ȳr, we have

∥x̄r − y∥0 ≥ ∥y − ȳr∥0 − ∥x̄r − ȳr∥0 > d′ − (d′ − q) ≥ q,

where x̄r is also as defined previously in (27), so no other y ∈ V is closer to x̄r than ȳr. The
first inequality follows from the reverse triangle inequality, while the second follows from the
fact that V has distance d′, so ∥y − ȳr∥ ≥ d′, and the fact that X − Y has less than d′ − q
nonzero entries, by assumption on X. So:∥∥∥∥∥

n∑
i=1

Gri(xi − yi)

∥∥∥∥∥
0

=

∥∥∥∥∥
n∑

i=1

Grixi − V

∥∥∥∥∥
0

≤ q,

but, from the matrix sparsity check, we know that this implies∥∥∥∥∥
m∑
i=1

Gri(xi − yi)

∥∥∥∥∥
0

≤ q =⇒
p

X − Y has at most q nonzero rows,

when r is uniformly randomly drawn from 1, . . . ,m, and where p ≤ (q + 1)(1 − d/m). In
English, this simply says that X is q-close to V , as required.

C.2 Distance-preserving encoding conjecture

The remaining case then, is to prove that, if X is at least (d′ − q)-far from V , then the
probability that ∥∥∥∥∥

n∑
i=1

Grixi − V

∥∥∥∥∥
0

≤ q,

with respect to a uniformly randomly drawn r from 1, . . . ,m, and where q < d′/2 is very
low. Indeed, we conjecture that the probability this is true, call it p, satisfies

p ≤ (q + 1)

(
1 − d

m

)
,
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where d is the distance of the code generated by G ∈ Fm×n. We may write this in the
notation of §1.4 as∥∥∥∥∥

n∑
i=1

Grixi − V

∥∥∥∥∥
0

≤ q =⇒
p

X is (d′ − q)-close to V ,

where p ≤ (q + 1)(1 − d/m). (Note that this claim is always ‘easier’ than the original claim
since d < d′/2.)

Notes. Such a statement is similar in spirit to that of [AHIV17]. In a certain sense, the
above statement means that we may replace the uniform randomness of the check presented
in [AHIV17] with the much more structured ‘randomness’ coming from picking a uniformly
random row of an error correcting code matrix G with reasonable distance. For example,
an interesting statement, similar in spirit to those used in the proof of the Hadamard case
in [AHIV17], is the following. Given any nonzero vector y ∈ R(X), let V ⊥ ⊆ R(X) be the
space such that any vector v ∈ R(X) may be written uniquely as

v = αy + z,

for some z ∈ V ⊥ and α ∈ F. (In other words, V ⊥ is the remainder of the basis completion
of the matrix containing only the column y; in some cases the subspace V ⊥ is called the
rejection of the ray given by y.) Then, for a randomly drawn row g̃r of G, if

Xg̃r = αry + zr,

where zr ∈ V ⊥ and αr ∈ F, then the probability that αr = 0 is no more than 1 − d/m.
In other words, given any possible ‘direction’ y in the range of X, we know that, with high
probability, any structured linear combination of the columns of X always has a component
in this direction. Unfortunately, unlike the proof of [AHIV17], we do not know much about
the relationship between zr and αr, which makes it difficult to conclude something about the
probability that a given vector is far from R(X). (In their proof, αr and zr are known to be
independent variables, with respect to the randomness r.) We may view this statement as
saying that the structured linear combinations given by a uniformly sampled row, g̃r, are, in
a sense, ‘good testers’ of the range of X.

D Basis alignment

In this appendix we prove that certain matrices Ti ∈ Fn×k for i = 1, . . . , ℓ, which share
sparsity patterns, satisfy the basis alignment property. That is: if X ∈ Fk×ℓ is q-close to V ′

and xi denotes the ith column of X, then we have that

∥T1x1 + · · · + Tℓxℓ − V ∥0 ≤ q′, (28)

for some reasonably small q′. The proofs are essentially mechanical, and we encourage readers
to work them out before reading this appendix as an exercise in definitions.
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Warm up. The easiest nontrivial case to see is when the Ti are diagonal matrices and the
vector space V satisfies

V = T1V
′ ⊕ · · · ⊕ TℓV

′.

In this case it is not hard to show that the inequality (28) holds for q′ = q. To see this, let
X be q-close to V ; that is, there exists a matrix Y , with columns in V , such that X −Y has
at most q nonzero rows. Let xi denote the ith column of X and ξi denote the ith column of
X − Y , then

∥T1x1 + · · · + Tℓxℓ − V ∥0 = ∥T1ξ1 + · · · + Tℓξℓ − V ∥0.

This holds since, by definition, the columns of Y are vectors in V and we can write ξi = xi−yi
where yi is the ith column of Y . Now, since 0 ∈ V , then the right hand side of the previous
expression can be bounded from above by

∥T1ξ1 + · · · + Tℓξℓ − V ∥0 ≤ ∥T1ξ1 + · · · + Tℓξℓ∥0.

Finally, since the Ti are diagonal, then Tiξi only scales the entries of ξi (potentially by zeroing
them out) so:

∥T1ξ1 + · · · + Tℓξℓ∥0 ≤ |{j | there exists some i such that (ξi)j ̸= 0}|.

(We recommend parsing the right hand side of this expression carefully.) In other words, the
left hand side is bounded above by the number of rows of X − Y which are nonzero. Since
we assumed that X was q-close to V , that means that X − Y has at most q nonzero rows,
so we have:

∥T1ξ1 + · · · + Tℓξℓ − V ∥0 ≤ q,

as we wanted to prove.

Basic example. One useful example of this is when α1, . . . , αn ∈ F denotes some evalua-
tion points, while V ′ denotes the vector space of evaluations of polynomials (at the αi) whose
terms are all of even degree ≤ 2k, and V is the vector space of evaluations of polynomials of
degree ≤ 2k + 1. In other words, we set

V ′ = R


1 α2

1 α4
1 . . . α2k

1
...

...
...

. . .
...

1 α2
n α4

n . . . α2k
n


 ,

while

V = R


1 α1 α2

1 . . . α2k
1

...
...

...
. . .

...
1 αn α2

n . . . α2k
n


 .

(Note that the matrix whose range is V ′ only has the even powers, while V has all powers.)
We can then write

V = V ′ ⊕DV ′,
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where

D =


α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αn

 .

It is not hard to see since, first DV ′ corresponds to the set of evaluations of polynomials
whose terms are of odd degree ≤ 2k + 1. Since we may write

V = IV ′ ⊕DV ′,

where I is the identity matrix, then both I and D are diagonal and we have that these
matrices are basis aligned such that

∥x + Dy − V ∥ ≤ q,

if [x y], the n× 2 matrix with columns x and y, is q-close to V ′.

General case. The general case is written as follows. Let Ti ∈ Fn×k be matrices such that
each column has at most c nonzero entries and all of the Ti share the same sparsity pattern.
Then, if X ∈ Fk×ℓ is q-close to V ′, we have that

∥T1x1 + · · · + Tℓxℓ − V ∥0 ≤ cq.

The proof of this statement is very similar to the previous. Since X is q-close to V ′, then
there exists some Y ∈ Fk×ℓ, whose columns lie in V ′, such that X−Y has at most q nonzero
rows. Let ξi denote the ith column of X − Y , then, by the same reasoning as the previous,

∥T1x1 + · · · + Tℓxℓ − V ∥0 = ∥T1ξ1 + · · · + Tℓξℓ − V ∥0.

Again, we note that since 0 ∈ V , we have that

∥T1ξ1 + · · · + Tℓξℓ − V ∥0 ≤ ∥T1ξ1 + · · · + Tℓξℓ∥0,

which means we only have to bound the latter quantity. We can bound this quantity since,
letting τij be the jth column of Ti,

∥T1ξ1 + · · · + Tℓξℓ∥0 =

∥∥∥∥∥
ℓ∑

i=1

k∑
j=1

τij(ξi)j

∥∥∥∥∥
0

≤
k∑

j=1

∥∥∥∥∥
ℓ∑

i=1

τij(ξi)j

∥∥∥∥∥
0

≤ cq.

The equality follows by definitions of the τij and ξi. The first inequality follows from the
triangle inequality. Finally, the last inequality follows since, by assumption, for fixed j, the
vectors τij share the same sparsity pattern for each i. Since this is true and each column of
Ti (and therefore each vector τij) has at most c nonzero entries, then the result follows from
the fact that there are at most q indices j such that at least one index i has (ξi)j ̸= 0, by
definition of the ξi.
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