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More complicated optical devices

» Many more ‘simple’ devices (mirrors, filters, etc.)
» Can be combined to make more complex devices
» We (as designers) generally have a specific goal

» But: usually not obvious how to achieve goal by combining
‘simple’ components
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A weird idea

» Given a device and an input, we can simulate its behavior

» Can ‘experiment’ as much as we want until we find a good
design

» Possible to automate this?
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The ‘experimental’ set up

> A typical set up looks like the following:
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What is ‘good’ anyways

» The first question:
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What is ‘good’ anyways

» The first question:

» What does it mean for a design to be ‘good’?
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What is ‘good’ anyways

» The first question:

» What does it mean for a design to be ‘good’?

> We write this as an objective function

» This function takes in a device's output and gives a number

P> The lower the number, the better the design
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Parametrizations

» The second question:
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Parametrizations

» The second question:

» How do we turn ‘design something’ into a (simple)
mathematical problem?
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Parametrizations
» The second question:

» How do we turn ‘design something’ into a (simple)
mathematical problem?

> Many possibilities! We will choose a simple parametrization:

- —>
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input output
Parameters
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Parametrizations

» Computer proposes a design (—1 or 1 at each square)

> Receives a score (or objective value); lower is better:

—> —>
Known Desired
input output
Parameters
= Device!

» The ‘best’ design has the lowest possible score
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What are the questions?
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» Can we find the best design?
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What are the questions?

» Can we find the best design?
» Can we quickly find a good design?

» Given a good design... is it close to the best?

(Or are there better designs we haven't found?)
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The answers

» Can we find the best design? Probably not
» Can we quickly find a good design? Yes

» Given a good design... is it close to the best? Yes (in practice)
(Or are there better designs we haven't found?)
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The answers

» Can we find the best design? Probably not
» Can we quickly find a good design? Yes

» Given a good design... is it close to the best? Yes (in practice)
(Or are there better designs we haven't found?)

» Bounds are (very!) common in physics
(Wheeler, 1947), (Bohren, 1982), (Yu, Raman, Fan, 2012), (Miller 2019)

» Computational bounds are new
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» Some designs:

(From Su, et al., 2018)
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Examples

» Some designs:
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Design Region

(From Angeris, Diamandis, et al., 2022)
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Examples

» Some designs:

(From Angeris, Diamandis, et al., 2022)
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Basic results

» In many cases, we find that optimized designs are usually
quite close to optimal

» We can usually optimize large designs

» Usually, the designs found are no more than around 5-10
percent away from the best possible!
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Here be dragons

» Onto the physics and math...
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Problem set up

Problem set up
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Known
input

Problem set up

Physics equation

H_/

Parameters

= Device!

—

Desired
output
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Physics equation

—> —
Known Desired
input output
Parameters
= Device!

» We will call the parameters we control, 6 € [-1,1]"
» The known input or excitation is b € R"

» The field (including the output) is z € R"
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Known
input

Physics equation

%f—}

Parameters

= Device!

—>

Desired
output

» In photonics, the equation connecting parameters to field is

usually

(A + diag(0))z = b,

where A € R™" is a matrix.

Problem set up
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Physics equation (continued)

» Where does this come from?

Problem set up

21



Physics equation (continued)

» Where does this come from?

» The EM wave equation can be written as

(-VxVx+ k* ) E =_J
——— ~— I~
A diag(9) =z b

where A, 6, z and b are the discretized counterparts
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Physics equation (continued)

» Where does this come from?

» The EM wave equation can be written as

(-VxVx+ k* ) E =_J
——— ~— I~
A diag(6) =z b

where A, 6, z and b are the discretized counterparts

» Hence
(A+diag(0))z= b

» This equation is very general

» Includes EM, thermal design, Schrodinger equation, ...

Problem set up
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Objective function

» Given the physics and parameter constraints, we now need to
specify the objective

» The objective function is a function f : R" — RU {400}
» The value f(z) tells us how good the field z is

» (From before, lower is better)

Problem set up 22



Optimization problem

> We now have everything we need!

Problem set up
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Optimization problem

> We now have everything we need!

» Formulated as an optimization problem, we want

minimize  f(z)
subject to (A + diag(f))z=b
-1<60<1

with variables z and 6

» This is the only problem we will focus on

Problem set up
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Basic properties

» The problem:

minimize  f(z)
subject to (A + diag(#))z = b
-1<6<1

» Finding a feasible point is NP-hard in general
(Angeris, Vutkovi¢, Boyd, 2021)

Sign flip descent
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Basic properties

» The problem:

minimize  f(z)
subject to (A + diag(#))z = b
-1<6<1

» Finding a feasible point is NP-hard in general
(Angeris, Vutkovi¢, Boyd, 2021)

» Biconvex in 8 and z when f is convex, smooth if f is smooth

> Many heuristics exploit these facts
e.g., (Lu, Vutkovi¢, 2010), (Jiang, Fan, 2020)

Sign flip descent
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Interesting properties

> We have shown many other interesting properties

Sign flip descent
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Interesting properties

> We have shown many other interesting properties

» Knowing only the signs of any optimal field z* is enough to
solve the problem

» Implies optimal designs can be made extremal, 0; € {£1}, for
many i when the objective depends only on a few i (not
obvious)

(Angeris, Vugkovi¢, Boyd, 2021)
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The signs are all you need

P> To see this, note we can eliminate the design variable to get

minimize  f(z)
subject to |Az — b| < ||

» Still nonconvex, but given any optimal signs, sign(z*), the
following (convex!) problem has the same optimal value:

minimize  f(z)

subject to |Az — b| < sign(z*) oz

where o is the Hadamard (elementwise) product

Sign flip descent 27



Sign flip descent

» This idea also suggests a heuristic: sign flip descent (SFD)
(Angeris, Vutkovi¢, Boyd, 2021)
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Sign flip descent

» This idea also suggests a heuristic: sign flip descent (SFD)
(Angeris, Vutkovi¢, Boyd, 2021)

» Start with some set of signs s € {£1}" and solve the convex
problem
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with variable z

Sign flip descent 28



Sign flip descent

» This idea also suggests a heuristic: sign flip descent (SFD)
(Angeris, Vutkovi¢, Boyd, 2021)

» Start with some set of signs s € {£1}" and solve the convex

problem
minimize  f(z)

subject to |Az—b| <soz

with variable z

» If z; = 0 then sign is (probably) wrong, so set s/ = —s; and
try again
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Sign flip descent

» This idea also suggests a heuristic: sign flip descent (SFD)
(Angeris, Vutkovi¢, Boyd, 2021)

» Start with some set of signs s € {£1}" and solve the convex
problem
minimize  f(z)
subject to |Az—b| <soz

with variable z

» If z; = 0 then sign is (probably) wrong, so set s/ = —s; and
try again

» Do this until objective does not decrease anymore (or
decreases slowly)

Sign flip descent 28



Results

» Only a few iterations needed before being near-optimal
» For small-to-medium-sized problems, it's very fast

» Around 10 times faster than IPOPT and often results in much
better convergence

Sign flip descent
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Results

» Only a few iterations needed before being near-optimal
» For small-to-medium-sized problems, it's very fast

» Around 10 times faster than IPOPT and often results in much
better convergence

» (We will see an example soon!)

Sign flip descent
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Quadratically constrained quadratic programs

> We can start with the ‘new’ problem

minimize  f(z)
subject to |Az — b| < |Z|

» And square both sides of the inequality to get

minimize  f(z)

subject to (a]z—b)?<z?, i=1,...,n,

1

where aiT is the /th row of A
(Kuang and Miller, 2020), (Molesky, Chao, Rodriguez, 2020)

» If f is a quadratic then this is a QCQP, which is a very special
type of problem

Performance bounds
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QCQPs, continued

» If f is a quadratic then it can be written as
f(z)=z"Pz4+2p"z 4,
where P € S", g € R", r € R are problem data
» So the problem becomes

minimize z'Pz+2q"z+r

subject to (a)z— b)) <%, i=1,...

Performance bounds
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QCQPs, continued

» We will ‘massage’ it into one final form:

minimize  (z,1)7 P(z,1)
subject to  (z,1)TAi(z,1) <0, i=1,...,n,
where
5 P q A a,-a,-T—E,-,- —b,-a,- .

and Ej; is the all-zeros matrix except with a single 1 at the
i,ith entry

» (The details are not super important; the fact we can do it is)
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Finally, something

» Given the QCQP
minimize  (z,1)7 P(z,1)
subject to  (z, l)TA,-(z, 1)<0, i=1,.

there is a standard ‘relaxation’ method

» This method gives a (semidefinite) convex problem:

minimize  tr(PZ)
subject to tr(A;Z) <0, i=1,...,n,
Zn—i—l,n—i—l =1
Z>0
with variable Z € S'}

Performance bounds

..,n,
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Some observations

» Always guaranteed to give a lower bound
» Solving can be done efficiently (in P)
» Solution gives reasonable initializations (!)

» This bound can be generalized to other objectives
(Angeris, Diamandis, et al., 2022)

Performance bounds
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Results on bounds

» There are many methods to get similar bounds
(Angeris, Vutkovi¢, Boyd, 2019)

» Some suggest reasonable initializations

Initial design
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Results on bounds (continued)

» Similar bounds suggest that heuristics give nearly-optimal
designs

» For example, mode converters are usually very close to
optimal in both overlap and mode purity (< 10% away)

1T) P

'
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Design Region

Performance bounds
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Example
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From start to end

> Let's see it in action

» Go from problem, to heuristic, to design, to bound!

Example
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From start to end

> Goal: get a ‘field’ that looks like this

Example
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From start to end

» Given a single (tiny) excitation at the center:

250
200
150

100

Example
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From start to end

> Let's see what happens when we feed this to SFD!

Example

20 |

iteration 1

1.00

075

0.50

025

-0.50

-075

-1.00

objective 786.6989441133971
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0.0075
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0.0025
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From start to end

> Let's see what happens when we feed this to SFD!

250

200

100

Example

iteration 2
—

1.00

075

0.50

025

objective 30.854630619949504
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From start to end

> Let's see what happens when we feed this to SFD!

250
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100

Example

iteration 3
)
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objective 20.397480436316787
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From start to end

> Let's see what happens when we feed this to SFD!
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Example

iteration 8
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From start to end

> Let's see what happens when we feed this to SFD!

iteration 14

250 1.00
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Example

objective 12.964582351850424
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From start to end

> Let's see what happens when we feed this to SFD!

Example

250
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iteration 21
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objective 12.116327050941496
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From start to end

> Let's see what happens when we feed this to SFD!

200

100

Example
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iteration 27
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objective 11.90090734533457
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From start to end

> Let's see what happens when we feed this to SFD!

iteration 31
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Example

objective 11.86645171286482
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From start to end

> Let's see what happens when we feed this to SFD!

iteration 37

1.00

075

200

050

025

100

= e e et =} ]

» And the algorithm terminates here!

Example

objective 11.84442828880659
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From start to end

» SFD terminates with an objective value of 11.84

» What does the bound say is possible?

Example
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From start to end

» SFD terminates with an objective value of 11.84
» What does the bound say is possible? 11.69 (!)

» In other words, the design is no more than

11.84 — 11.69

~ 0
11.69 ~ 1.3%

suboptimal

» (We are essentially globally optimal!)
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Conclusion

» Inverse design is really good at finding designs

» The photonic design problem is very structured, even though
it is nonconvex and hard to solve exactly

» In general, bounds give us a good ‘view of the land": can we
even achieve a desired goal?

P> Results suggest that the photonic design problem has more
properties that can be exploited for faster solving

Conclusion
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