Heuristics and Bounds For Photonic Design

Guillermo Angeris

March 2, 2022

Outline

(Very) high level overview

Problem set up

Sign flip descent

Performance bounds

Example

Optical devices

Optical devices are everywhere !

Optical devices

Optical devices are everywhere !

Lenses

Optical devices

Optical devices are everywhere !

More complicated optical devices

- Many more 'simple' devices (mirrors, filters, etc.)
- Can be combined to make more complex devices

More complicated optical devices

- Many more 'simple' devices (mirrors, filters, etc.)
- Can be combined to make more complex devices
- ▶ We (as designers) generally have a specific goal

More complicated optical devices

- Many more 'simple' devices (mirrors, filters, etc.)
- Can be combined to make more complex devices
- ▶ We (as designers) generally have a specific goal
- But: usually not obvious how to achieve goal by combining 'simple' components

A weird idea

- Given a device and an input, we can simulate its behavior
- Can 'experiment' as much as we want until we find a good design
- Possible to automate this?

The 'experimental' set up

A typical set up looks like the following:

What is 'good' anyways

► The first question:

What is 'good' anyways

- ► The first question:
- What does it mean for a design to be 'good'?

What is 'good' anyways

- The first question:
- What does it mean for a design to be 'good'?
- We write this as an objective function
- This function takes in a device's output and gives a number
- The lower the number, the better the design

► The second question:

- The second question:
- How do we turn 'design something' into a (simple) mathematical problem?

- The second question:
- How do we turn 'design something' into a (simple) mathematical problem?
- Many possibilities! We will choose a simple *parametrization*:

• Computer proposes a *design* (-1 or 1 at each square)

Receives a score (or objective value); lower is better:

The 'best' design has the lowest possible score

- Can we find the best design?
- Can we quickly find a good design?

- Can we find the best design?
- Can we quickly find a good design?
- Given a good design... is it close to the best? (Or are there better designs we haven't found?)

The answers

- Can we find the best design? Probably not
- Can we quickly find a good design? Yes
- Given a good design... is it close to the best? Yes (in practice) (Or are there better designs we haven't found?)

The answers

- Can we find the best design? Probably not
- Can we quickly find a good design? Yes
- Given a good design... is it close to the best? Yes (in practice) (Or are there better designs we haven't found?)
- Bounds are (very!) common in physics (Wheeler, 1947), (Bohren, 1982), (Yu, Raman, Fan, 2012), (Miller 2019)

Computational bounds are new

Examples

(From Su, et al., 2018)

Examples

Some designs:

(From Angeris, Diamandis, et al., 2022)

Examples

Some designs:

(From Angeris, Diamandis, et al., 2022)

Basic results

- In many cases, we find that optimized designs are usually quite close to optimal
- We can usually optimize large designs
- Usually, the designs found are no more than around 5-10 percent away from the best possible!

Here be dragons

Onto the physics and math...

Outline

(Very) high level overview

Problem set up

Sign flip descent

Performance bounds

Example

Physics equation

Problem set up

Physics equation

- We will call the *parameters* we control, $\theta \in [-1, 1]^n$
- The known input or *excitation* is $b \in \mathbf{R}^n$
- ▶ The *field* (including the output) is $z \in \mathbf{R}^n$

Problem set up

Physics equation

In photonics, the equation connecting parameters to field is usually

$$(A + \operatorname{diag}(\theta))z = b$$

```
where A \in \mathbf{R}^{n \times n} is a matrix.
```

Physics equation (continued)

Where does this come from?

Physics equation (continued)

- Where does this come from?
- The EM wave equation can be written as

where A, θ , z and b are the discretized counterparts

Physics equation (continued)

- Where does this come from?
- The EM wave equation can be written as

where A, θ , z and b are the discretized counterparts

Hence

$$(A + \operatorname{diag}(\theta))z = b$$

This equation is very general

Includes EM, thermal design, Schrödinger equation, ...

Problem set up

Objective function

- Given the physics and parameter constraints, we now need to specify the objective
- The *objective function* is a function $f : \mathbf{R}^n \to \mathbf{R} \cup \{+\infty\}$
- The value f(z) tells us how good the field z is
- (From before, lower is better)

Problem set up
Optimization problem

▶ We now have everything we need!

Problem set up

Optimization problem

- ▶ We now have everything we need!
- Formulated as an optimization problem, we want

$$\begin{array}{ll} \text{minimize} & f(z) \\ \text{subject to} & (A + \textbf{diag}(\theta))z = b \\ & -\mathbf{1} \leq \theta \leq \mathbf{1} \end{array}$$

with variables z and θ

This is the only problem we will focus on

Outline

(Very) high level overview

Problem set up

Sign flip descent

Performance bounds

Example

Sign flip descent

Basic properties

► The problem:

$$\begin{array}{ll} \text{minimize} & f(z) \\ \text{subject to} & (A + \textbf{diag}(\theta))z = b \\ & -\mathbf{1} \leq \theta \leq \mathbf{1} \end{array}$$

 Finding a feasible point is NP-hard in general (Angeris, Vučković, Boyd, 2021)

Basic properties

The problem:

$$\begin{array}{ll} \text{minimize} & f(z) \\ \text{subject to} & (A + \textbf{diag}(\theta))z = b \\ & -\mathbf{1} \leq \theta \leq \mathbf{1} \end{array}$$

- Finding a feasible point is NP-hard in general (Angeris, Vučković, Boyd, 2021)
- Biconvex in θ and z when f is convex, smooth if f is smooth
- Many heuristics exploit these facts e.g., (Lu, Vučković, 2010), (Jiang, Fan, 2020)

Sign flip descent

Interesting properties

We have shown many other interesting properties

Sign flip descent

Interesting properties

- We have shown many other interesting properties
- Knowing only the signs of any optimal field z* is enough to solve the problem
- Implies optimal designs can be made *extremal*, θ_i ∈ {±1}, for many *i* when the objective depends only on a few *i* (not obvious) (Angeris, Vučković, Boyd, 2021)

The signs are all you need

To see this, note we can eliminate the design variable to get

minimize f(z)subject to $|Az - b| \le |z|$

Still nonconvex, but given any optimal signs, sign(z*), the following (convex!) problem has the same optimal value:

minimize
$$f(z)$$

subject to $|Az - b| \le \operatorname{sign}(z^*) \circ z$

where \circ is the Hadamard (elementwise) product

Sign flip descent

 This idea also suggests a heuristic: sign flip descent (SFD) (Angeris, Vučković, Boyd, 2021)

- This idea also suggests a heuristic: sign flip descent (SFD) (Angeris, Vučković, Boyd, 2021)
- ▶ Start with some set of signs $s \in \{\pm 1\}^n$ and solve the convex problem

minimize f(z)subject to $|Az - b| \le s \circ z$

with variable z

- This idea also suggests a heuristic: sign flip descent (SFD) (Angeris, Vučković, Boyd, 2021)
- ▶ Start with some set of signs $s \in \{\pm 1\}^n$ and solve the convex problem

minimize f(z)subject to $|Az - b| \le s \circ z$

with variable z

▶ If $z_i \approx 0$ then sign is (probably) wrong, so set $s'_i = -s_i$ and try again

- This idea also suggests a heuristic: sign flip descent (SFD) (Angeris, Vučković, Boyd, 2021)
- ▶ Start with some set of signs $s \in \{\pm 1\}^n$ and solve the convex problem

minimize f(z)subject to $|Az - b| \le s \circ z$

with variable z

- ▶ If $z_i \approx 0$ then sign is (probably) wrong, so set $s'_i = -s_i$ and try again
- Do this until objective does not decrease anymore (or decreases slowly)

Sign flip descent

Results

- Only a few iterations needed before being near-optimal
- For small-to-medium-sized problems, it's very fast
- Around 10 times faster than IPOPT and often results in much better convergence

Results

- Only a few iterations needed before being near-optimal
- For small-to-medium-sized problems, it's very fast
- Around 10 times faster than IPOPT and often results in much better convergence
- (We will see an example soon!)

Outline

(Very) high level overview

Problem set up

Sign flip descent

Performance bounds

Example

Quadratically constrained quadratic programs

We can start with the 'new' problem

minimize f(z)subject to $|Az - b| \le |z|$

And square both sides of the inequality to get

minimize f(z)subject to $(a_i^T z - b_i)^2 \le z_i^2$, i = 1, ..., n, where a_i^T is the *i*th row of A

(Kuang and Miller, 2020), (Molesky, Chao, Rodriguez, 2020)

If f is a quadratic then this is a QCQP, which is a very special type of problem

QCQPs, continued

If f is a quadratic then it can be written as

$$f(z) = z^T P z + 2p^T z + r,$$

where $P \in \mathbf{S}_{+}^{n}$, $q \in \mathbf{R}^{n}$, $r \in \mathbf{R}$ are problem data

So the problem becomes

minimize
$$z^T P z + 2q^T z + r$$

subject to $(a_i^T z - b_i)^2 \le z_i^2$, $i = 1, ..., n$

QCQPs, continued

We will 'massage' it into one final form:

minimize
$$(z,1)^T \overline{P}(z,1)$$

subject to $(z,1)^T \overline{A}_i(z,1) \leq 0, \quad i = 1, \dots, n,$

where

$$\bar{P} = \begin{bmatrix} P & q \\ q^T & r \end{bmatrix}, \quad \bar{A}_i = \begin{bmatrix} a_i a_i^T - E_{ii} & -b_i a_i \\ -b_i a_i^T & b_i^2 \end{bmatrix}, \quad i = 1, \dots, n,$$

and E_{ii} is the all-zeros matrix except with a single 1 at the i, ith entry

(The details are not super important; the fact we can do it is)

Finally, something

Given the QCQP

 $\begin{array}{ll} \text{minimize} & (z,1)^T \bar{P}(z,1) \\ \text{subject to} & (z,1)^T \bar{A}_i(z,1) \leq 0, \quad i=1,\ldots,n, \end{array}$

there is a standard 'relaxation' method

This method gives a (semidefinite) convex problem:

minimize
$$\mathbf{tr}(\bar{P}Z)$$

subject to $\mathbf{tr}(\bar{A}_iZ) \leq 0, \quad i = 1, \dots, n,$
 $Z_{n+1,n+1} = 1$
 $Z > 0$

with variable $Z \in \mathbf{S}^n_+$

Some observations

- Always guaranteed to give a lower bound
- Solving can be done efficiently (in P)
- Solution gives reasonable initializations (!)
- This bound can be generalized to other objectives (Angeris, Diamandis, et al., 2022)

Results on bounds

 There are many methods to get similar bounds (Angeris, Vučković, Boyd, 2019)

Some suggest reasonable initializations

Results on bounds (continued)

- Similar bounds suggest that heuristics give nearly-optimal designs
- For example, mode converters are usually very close to optimal in both overlap and mode purity (< 10% away)

Outline

(Very) high level overview

Problem set up

Sign flip descent

Performance bounds

Example

▶ Go from problem, to heuristic, to design, to bound!

Goal: get a 'field' that looks like this

Given a single (tiny) excitation at the center:

Let's see what happens when we feed this to SFD!

Let's see what happens when we feed this to SFD!

Let's see what happens when we feed this to SFD!

Let's see what happens when we feed this to SFD!

Let's see what happens when we feed this to SFD!

Let's see what happens when we feed this to SFD!

Let's see what happens when we feed this to SFD!

Let's see what happens when we feed this to SFD!

And the algorithm terminates here!

- ► SFD terminates with an objective value of 11.84
- What does the bound say is possible?
From start to end

- SFD terminates with an objective value of 11.84
- ▶ What does the bound say is possible? 11.69 (!)
- In other words, the design is no more than

$$\frac{11.84-11.69}{11.69}\approx 1.3\%$$

suboptimal

Example

Conclusion

- Inverse design is really good at finding designs
- The photonic design problem is very structured, even though it is nonconvex and hard to solve exactly
- In general, bounds give us a good 'view of the land': can we even achieve a desired goal?
- Results suggest that the photonic design problem has more properties that can be exploited for faster solving

Acknowledgements

- Advisors: Stephen Boyd and Jelena Vučković
- Committee and chair: Jonathan Fan, David Miller, Mac Schwager
- Family: Ma, Pa, Katie, Carlos, Beth, Ben, Alfredo
- Ceci and Oscar (and Luciano and Daria :)
- Coauthors: Theo, Alex, Tarun, Akshay, Shane, Kunal

Acknowledgements

Acknowledgements

- Lab mates (Jonathan, Jesse, Kiyoul, Geun Ho, Rahul, Logan... many more!)
- The many, many people that made this possible: teachers, mentors, coaches, colleagues, friends

Acknowledgements

- Lab mates (Jonathan, Jesse, Kiyoul, Geun Ho, Rahul, Logan... many more!)
- The many, many people that made this possible: teachers, mentors, coaches, colleagues, friends

► And you!