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Optical devices

◮ Optical devices are everywhere !

(Very) high level overview 3



Optical devices

◮ Optical devices are everywhere !

◮ Lenses

(Very) high level overview 3



Optical devices

◮ Optical devices are everywhere !
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More complicated optical devices

◮ Many more ‘simple’ devices (mirrors, filters, etc.)

◮ Can be combined to make more complex devices

◮ We (as designers) generally have a specific goal

◮ But: usually not obvious how to achieve goal by combining
‘simple’ components
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A weird idea

◮ Given a device and an input, we can simulate its behavior

◮ Can ‘experiment’ as much as we want until we find a good
design

◮ Possible to automate this?
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The ‘experimental’ set up

◮ A typical set up looks like the following:
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What is ‘good’ anyways

◮ The first question:
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What is ‘good’ anyways

◮ The first question:

◮ What does it mean for a design to be ‘good’?
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What is ‘good’ anyways

◮ The first question:

◮ What does it mean for a design to be ‘good’?

◮ We write this as an objective function

◮ This function takes in a device’s output and gives a number

◮ The lower the number, the better the design
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Parametrizations

◮ The second question:
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Parametrizations

◮ The second question:

◮ How do we turn ‘design something’ into a (simple)
mathematical problem?
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Parametrizations

◮ The second question:

◮ How do we turn ‘design something’ into a (simple)
mathematical problem?

◮ Many possibilities! We will choose a simple parametrization:
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Parametrizations

◮ Computer proposes a design (−1 or 1 at each square)

◮ Receives a score (or objective value); lower is better:

◮ The ‘best’ design has the lowest possible score
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What are the questions?
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What are the questions?

◮ Can we find the best design?

◮ Can we quickly find a good design?

◮ Given a good design... is it close to the best?
(Or are there better designs we haven’t found?)
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The answers

◮ Can we find the best design? Probably not

◮ Can we quickly find a good design? Yes

◮ Given a good design... is it close to the best? Yes (in practice)
(Or are there better designs we haven’t found?)
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The answers

◮ Can we find the best design? Probably not

◮ Can we quickly find a good design? Yes

◮ Given a good design... is it close to the best? Yes (in practice)
(Or are there better designs we haven’t found?)

◮ Bounds are (very!) common in physics
(Wheeler, 1947), (Bohren, 1982), (Yu, Raman, Fan, 2012), (Miller 2019)

◮ Computational bounds are new
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Examples

◮ Some designs:

(From Su, et al., 2018)
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Examples

◮ Some designs:

Design Region

(From Angeris, Diamandis, et al., 2022)
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Examples

◮ Some designs:

(From Angeris, Diamandis, et al., 2022)
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Basic results

◮ In many cases, we find that optimized designs are usually
quite close to optimal

◮ We can usually optimize large designs

◮ Usually, the designs found are no more than around 5-10
percent away from the best possible!
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Here be dragons

◮ Onto the physics and math...
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Physics equation
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Physics equation

◮ We will call the parameters we control, θ ∈ [−1, 1]n

◮ The known input or excitation is b ∈ Rn

◮ The field (including the output) is z ∈ Rn
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Physics equation

◮ In photonics, the equation connecting parameters to field is
usually

(A+ diag(θ))z = b,

where A ∈ Rn×n is a matrix.
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Physics equation (continued)

◮ Where does this come from?
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Physics equation (continued)

◮ Where does this come from?

◮ The EM wave equation can be written as

(−∇×∇×! "# $
A

+ k2!"#$
diag(θ)

) E!"#$
z

= J!"#$
b

where A, θ, z and b are the discretized counterparts
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Physics equation (continued)

◮ Where does this come from?

◮ The EM wave equation can be written as

(−∇×∇×! "# $
A

+ k2!"#$
diag(θ)

) E!"#$
z

= J!"#$
b

where A, θ, z and b are the discretized counterparts

◮ Hence
(A+ diag(θ))z = b

◮ This equation is very general

◮ Includes EM, thermal design, Schrödinger equation, ...
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Objective function

◮ Given the physics and parameter constraints, we now need to
specify the objective

◮ The objective function is a function f : Rn → R ∪ {+∞}

◮ The value f (z) tells us how good the field z is

◮ (From before, lower is better)

Problem set up 22



Optimization problem

◮ We now have everything we need!
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Optimization problem

◮ We now have everything we need!

◮ Formulated as an optimization problem, we want

minimize f (z)

subject to (A+ diag(θ))z = b

− 1 ≤ θ ≤ 1

with variables z and θ

◮ This is the only problem we will focus on
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Basic properties

◮ The problem:

minimize f (z)

subject to (A+ diag(θ))z = b

− 1 ≤ θ ≤ 1

◮ Finding a feasible point is NP-hard in general
(Angeris, Vučković, Boyd, 2021)
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Basic properties

◮ The problem:

minimize f (z)

subject to (A+ diag(θ))z = b

− 1 ≤ θ ≤ 1

◮ Finding a feasible point is NP-hard in general
(Angeris, Vučković, Boyd, 2021)

◮ Biconvex in θ and z when f is convex, smooth if f is smooth

◮ Many heuristics exploit these facts
e.g., (Lu, Vučković, 2010), (Jiang, Fan, 2020)
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Interesting properties

◮ We have shown many other interesting properties
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Interesting properties

◮ We have shown many other interesting properties

◮ Knowing only the signs of any optimal field z" is enough to
solve the problem

◮ Implies optimal designs can be made extremal, θi ∈ {±1}, for
many i when the objective depends only on a few i (not
obvious)
(Angeris, Vučković, Boyd, 2021)
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The signs are all you need

◮ To see this, note we can eliminate the design variable to get

minimize f (z)

subject to |Az − b| ≤ |z |

◮ Still nonconvex, but given any optimal signs, sign(z"), the
following (convex!) problem has the same optimal value:

minimize f (z)

subject to |Az − b| ≤ sign(z") ◦ z

where ◦ is the Hadamard (elementwise) product
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Sign flip descent

◮ This idea also suggests a heuristic: sign flip descent (SFD)
(Angeris, Vučković, Boyd, 2021)
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◮ This idea also suggests a heuristic: sign flip descent (SFD)
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Sign flip descent

◮ This idea also suggests a heuristic: sign flip descent (SFD)
(Angeris, Vučković, Boyd, 2021)

◮ Start with some set of signs s ∈ {±1}n and solve the convex
problem

minimize f (z)

subject to |Az − b| ≤ s ◦ z
with variable z

◮ If zi ≈ 0 then sign is (probably) wrong, so set s ′i = −si and
try again
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Sign flip descent

◮ This idea also suggests a heuristic: sign flip descent (SFD)
(Angeris, Vučković, Boyd, 2021)

◮ Start with some set of signs s ∈ {±1}n and solve the convex
problem

minimize f (z)

subject to |Az − b| ≤ s ◦ z
with variable z

◮ If zi ≈ 0 then sign is (probably) wrong, so set s ′i = −si and
try again

◮ Do this until objective does not decrease anymore (or
decreases slowly)

Sign flip descent 28



Results

◮ Only a few iterations needed before being near-optimal

◮ For small-to-medium-sized problems, it’s very fast

◮ Around 10 times faster than IPOPT and often results in much
better convergence

Sign flip descent 29



Results

◮ Only a few iterations needed before being near-optimal

◮ For small-to-medium-sized problems, it’s very fast

◮ Around 10 times faster than IPOPT and often results in much
better convergence

◮ (We will see an example soon!)
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Quadratically constrained quadratic programs

◮ We can start with the ‘new’ problem

minimize f (z)

subject to |Az − b| ≤ |z |

◮ And square both sides of the inequality to get

minimize f (z)

subject to (aTi z − bi )
2 ≤ z2i , i = 1, . . . , n,

where aTi is the ith row of A
(Kuang and Miller, 2020), (Molesky, Chao, Rodriguez, 2020)

◮ If f is a quadratic then this is a QCQP, which is a very special
type of problem
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QCQPs, continued

◮ If f is a quadratic then it can be written as

f (z) = zTPz + 2pT z + r ,

where P ∈ Sn
+, q ∈ Rn, r ∈ R are problem data

◮ So the problem becomes

minimize zTPz + 2qT z + r

subject to (aTi z − bi )
2 ≤ z2i , i = 1, . . . , n
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QCQPs, continued

◮ We will ‘massage’ it into one final form:

minimize (z , 1)T P̄(z , 1)

subject to (z , 1)T Āi (z , 1) ≤ 0, i = 1, . . . , n,

where

P̄ =

%
P q
qT r

&
, Āi =

%
aia

T
i − Eii −biai

−bia
T
i b2i

&
, i = 1, . . . , n,

and Eii is the all-zeros matrix except with a single 1 at the
i , ith entry

◮ (The details are not super important; the fact we can do it is)
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Finally, something

◮ Given the QCQP

minimize (z , 1)T P̄(z , 1)

subject to (z , 1)T Āi (z , 1) ≤ 0, i = 1, . . . , n,

there is a standard ‘relaxation’ method

◮ This method gives a (semidefinite) convex problem:

minimize tr(P̄Z )

subject to tr(ĀiZ ) ≤ 0, i = 1, . . . , n,

Zn+1,n+1 = 1

Z ≥ 0

with variable Z ∈ Sn
+
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Some observations

◮ Always guaranteed to give a lower bound

◮ Solving can be done efficiently (in P)

◮ Solution gives reasonable initializations (!)

◮ This bound can be generalized to other objectives
(Angeris, Diamandis, et al., 2022)
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Results on bounds

◮ There are many methods to get similar bounds
(Angeris, Vučković, Boyd, 2019)

◮ Some suggest reasonable initializations
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Locally-optimized design
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Results on bounds (continued)

◮ Similar bounds suggest that heuristics give nearly-optimal
designs

◮ For example, mode converters are usually very close to
optimal in both overlap and mode purity (< 10% away)

Design Region
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From start to end

◮ Let’s see it in action

◮ Go from problem, to heuristic, to design, to bound!
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From start to end

◮ Goal: get a ‘field’ that looks like this
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From start to end

◮ Given a single (tiny) excitation at the center:
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From start to end

◮ Let’s see what happens when we feed this to SFD!
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From start to end
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From start to end

◮ Let’s see what happens when we feed this to SFD!
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From start to end

◮ Let’s see what happens when we feed this to SFD!

◮ And the algorithm terminates here!
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From start to end

◮ SFD terminates with an objective value of 11.84

◮ What does the bound say is possible?
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From start to end

◮ SFD terminates with an objective value of 11.84

◮ What does the bound say is possible? 11.69 (!)

◮ In other words, the design is no more than

11.84− 11.69

11.69
≈ 1.3%

suboptimal

◮ (We are essentially globally optimal!)
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Conclusion

◮ Inverse design is really good at finding designs

◮ The photonic design problem is very structured, even though
it is nonconvex and hard to solve exactly

◮ In general, bounds give us a good ‘view of the land’: can we
even achieve a desired goal?

◮ Results suggest that the photonic design problem has more
properties that can be exploited for faster solving
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