Linear algebra and zero knowledge

Guillermo Angeris Alex Evans

ZK Summit 9, Lisboa

Outline

An introduction

Eating vegetables

Results

Sparsity results

An introduction

What are we doing?

- We will generalize a number of important results used in ZK proofs

What are we doing?

- We will generalize a number of important results used in ZK proofs
- Most don't depend on polynomials!

What are we doing?

- We will generalize a number of important results used in ZK proofs
- Most don't depend on polynomials!
- Using (ideally) good notation, linear algebra
- And a sprinkling of error correcting codes

A warning for the brave

- Linear algebra over \mathbf{R} and \mathbf{C} :

A warning for the brave

- Linear algebra over \mathbf{R} and \mathbf{C} :

- Linear algebra over finite fields F:

Outline

An introduction

Eating vegetables

Results

Sparsity results

Notation preliminaries

- We'll use 'probabilistic' implications
- Given propositions (depending on randomness r and r^{\prime})

$$
P_{r} \quad \underset{p}{\Longrightarrow} Q_{r^{\prime}}
$$

if $\operatorname{Pr}\left(P_{r} \wedge \neg Q_{r^{\prime}}\right) \leq p$

- Number of downstream consequences

Implications

- Chaining implications

$$
P_{r} \quad \underset{p}{\Longrightarrow} \quad Q_{r^{\prime}} \quad \text { and } \quad Q_{r^{\prime}} \quad \underset{p^{\prime}}{\Longrightarrow} \quad T_{r^{\prime \prime}}
$$

- Then

$$
P_{r} \underset{p+p^{\prime}}{\Longrightarrow} \quad T_{r^{\prime \prime}}
$$

Implications

- Chaining implications

$$
P_{r} \quad \underset{p}{\Longrightarrow} Q_{r^{\prime}} \quad \text { and } \quad Q_{r^{\prime}} \quad \underset{p^{\prime}}{\Longrightarrow} \quad T_{r^{\prime \prime}}
$$

- Then

$$
P_{r} \underset{p+p^{\prime}}{\Longrightarrow} \quad T_{r^{\prime \prime}}
$$

- Many other things similar to 'normal' logic follow
- (With extra error)

Error correcting codes

- Given a linear code (matrix) $G \in \mathbf{F}^{m \times n}$
- We encode an n-vector x into a (much larger) codeword $G x$

Examples of codes

- Trivial code

$$
G=I
$$

Examples of codes

- Trivial code

$$
G=I
$$

- Reed-Solomon code

$$
G_{i j}=i^{j-1}
$$

- i.e., $(G x)_{r}$ encodes a polynomial with coefficients x and evaluates it at r

Error correcting codes (cont)

- We will use one (and only one!) definition from coding theory
- The distance d of G is

$$
d=\min _{x \neq 0}\|G x\|_{0}
$$

where $\|\cdot\|_{0}$ is the number of nonzero entries

Error correcting codes (cont)

- We will use one (and only one!) definition from coding theory
- The distance d of G is

$$
d=\min _{x \neq 0}\|G x\|_{0}
$$

where $\|\cdot\|_{0}$ is the number of nonzero entries

- In pictures:

Distances of codes

- The distance d of $G \in \mathbf{F}^{m \times n}$ is

$$
d=\min _{x \neq 0}\|G x\|_{0}
$$

- Trivial code $G=I$

$$
d=1
$$

- Reed-Solomon codes $G_{i j}=i^{j-1}$

$$
d=m-n+1 \quad(\text { rows }- \text { cols }+1)
$$

If $m=|\mathbf{F}|$ then $d=|\mathbf{F}|-n+1$

Outline

An introduction
 Eating vegetables

Results

Sparsity results

Results

Zero check

- The usual zero check:

$$
(G x)_{r}=0 \quad \Longrightarrow \quad x=0
$$

where r is uniformly chosen from $1, \ldots, m$ and $p \leq 1-d / m$

- For an RS code $d=|\mathbf{F}|-n+1$ so

$$
p \leq \frac{n-1}{|\mathbf{F}|}
$$

Generalized zero check

- "Generalized" zero check, given vectors y_{1}, \ldots, y_{n},

$$
\sum_{i} G_{r i} y_{i}=0 \quad \Longrightarrow \quad \text { every } y_{i}=0
$$

where $p \leq 1-d / m$

- For an RS code, same bound as before

$$
p \leq \frac{n-1}{|\mathbf{F}|}
$$

Generalized zero check (picture!)

Folded zero check

- Take "generalized" zero check and apply the zero check again!

$$
\left(G^{\prime}\left(\sum_{i} G_{r i} y_{i}\right)\right)_{r^{\prime}}=0 \quad \underset{p^{\prime}}{\Longrightarrow} \sum_{i} G_{r i} y_{i}=0
$$

and

$$
\sum_{i} G_{r i} y_{i}=0 \quad \Longrightarrow \quad \text { every } y_{i}=0
$$

where $p \leq 1-d / m$ and $p^{\prime} \leq 1-d^{\prime} / m^{\prime}$

- For an RS code, this is Schwarz-Zippel (with the same error!)

$$
p+p^{\prime} \leq \frac{(n-1)+\left(n^{\prime}-1\right)}{|\mathbf{F}|}
$$

Folded subspace check

- We can reduce checking n inclusions to just checking one

$$
\sum_{i} G_{r i} y_{i} \in V \quad \Longrightarrow \quad \text { every } y_{i} \in V
$$

where $p \leq 1-d / m$ and $V \in \mathbf{F}^{k}$ is any subspace

- For an RS code $d=|\mathbf{F}|-n+1$ so (again)

$$
p \leq \frac{n-1}{|\mathbf{F}|}
$$

Outline

An introduction

Eating vegetables

Results

Sparsity results

Sparse zero check

- Sparse zero check

$$
x_{S}=0 \quad \Longrightarrow \quad\|x\|_{0} \leq q
$$

where $S \subseteq\{1, \ldots, n\}$ uniformly and $p \leq(1-q / n)^{|S|}$

Folded sparse check (Ligero lite(tm))

- We can 'fold' many vectors y_{i} and just check the sparsity of one

$$
\left\|\sum_{i} G_{r i} y_{i}\right\|_{0} \leq q \quad \underset{p}{\Longrightarrow}\left\|y_{i}\right\|_{0} \leq q,
$$

$$
\text { where } p \leq(q+1)(1-d / m)
$$

Folded subspace distance check (generalized Ligero)

- We can check that all y_{i} are q-close to a subspace V by checking a single vector is!

$$
\left\|\sum_{i} G_{r i} y_{i}-V\right\|_{0} \leq q \quad \Longrightarrow \quad\left\|y_{i}-V\right\|_{0} \leq q
$$

where $p \leq(q+1)(1-d / m)$ and $q<d^{\prime} / 2$, defined as

$$
d^{\prime}=\min _{v \in V \backslash\{0\}}\|v\|_{0}
$$

Folded subspace distance check (cont)

- Part of the folded subspace distance proof is still open!
- Come and chat with us if this sounds interesting :)

A whirlwind tour

- We just did... 7 checks in 10 minutes
- Many generalizations are straightforward
- We can replace RS in parts with other ECCs that are more computationally efficient
- And we can understand many systems in one framework

A whirlwind tour

- We just did... 7 checks in 10 minutes
- Many generalizations are straightforward
- We can replace RS in parts with other ECCs that are more computationally efficient
- And we can understand many systems in one framework
- Paper (hopefully) soon!

Acknowledgments

- Assimakis Kattis

