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What are we doing?

▶ We will generalize a number of important results used in ZK
proofs

▶ Most don’t depend on polynomials!

▶ Using (ideally) good notation, linear algebra

▶ And a sprinkling of error correcting codes
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A warning for the brave

▶ Linear algebra over R and C:

▶ Linear algebra over finite fields F:
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Notation preliminaries

▶ We’ll use ‘probabilistic’ implications

▶ Given propositions (depending on randomness r and r ′)

Pr =⇒
p

Qr ′

if Pr(Pr ∧ ¬Qr ′) ≤ p

▶ Number of downstream consequences
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Implications

▶ Chaining implications

Pr =⇒
p

Qr ′ and Qr ′ =⇒
p′

Tr ′′

▶ Then
Pr =⇒

p+p′
Tr ′′

▶ Many other things similar to ‘normal’ logic follow

▶ (With extra error)
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Error correcting codes

▶ Given a linear code (matrix) G ∈ Fm×n

▶ We encode an n-vector x into a (much larger) codeword Gx
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Examples of codes

▶ Trivial code
G = I

▶ Reed–Solomon code
Gij = i j−1

▶ i.e., (Gx)r encodes a polynomial with coefficients x and
evaluates it at r
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Error correcting codes (cont)

▶ We will use one (and only one!) definition from coding theory

▶ The distance d of G is

d = min
x ̸=0

∥Gx∥0,

where ∥ · ∥0 is the number of nonzero entries

▶ In pictures:
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Distances of codes

▶ The distance d of G ∈ Fm×n is

d = min
x ̸=0

∥Gx∥0

▶ Trivial code G = I
d = 1

▶ Reed–Solomon codes Gij = i j−1

d = m − n + 1 (rows− cols + 1)

If m = |F| then d = |F| − n + 1
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Zero check

▶ The usual zero check:

(Gx)r = 0 =⇒
p

x = 0,

where r is uniformly chosen from 1, . . . ,m and p ≤ 1− d/m

▶ For an RS code d = |F| − n + 1 so

p ≤ n − 1

|F|
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Generalized zero check

▶ “Generalized” zero check, given vectors y1, . . . , yn,∑
i

Griyi = 0 =⇒
p

every yi = 0,

where p ≤ 1− d/m

▶ For an RS code, same bound as before

p ≤ n − 1

|F|

Results 14



Generalized zero check (picture!)
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Folded zero check

▶ Take “generalized” zero check and apply the zero check again!(
G ′

(∑
i

Griyi

))
r ′

= 0 =⇒
p′

∑
i

Griyi = 0,

and ∑
i

Griyi = 0 =⇒
p

every yi = 0,

where p ≤ 1− d/m and p′ ≤ 1− d ′/m′

▶ For an RS code, this is Schwarz–Zippel (with the same error!)

p + p′ ≤ (n − 1) + (n′ − 1)

|F|
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Folded subspace check

▶ We can reduce checking n inclusions to just checking one∑
i

Griyi ∈ V =⇒
p

every yi ∈ V ,

where p ≤ 1− d/m and V ∈ Fk is any subspace

▶ For an RS code d = |F| − n + 1 so (again)

p ≤ n − 1

|F|
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Sparse zero check

▶ Sparse zero check

xS = 0 =⇒
p

∥x∥0 ≤ q,

where S ⊆ {1, . . . , n} uniformly and p ≤ (1− q/n)|S |
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Folded sparse check (Ligero lite(tm))

▶ We can ‘fold’ many vectors yi and just check the sparsity of
one ∥∥∥∥∥∑

i

Griyi

∥∥∥∥∥
0

≤ q =⇒
p

∥yi∥0 ≤ q,

where p ≤ (q + 1)(1− d/m)
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Folded subspace distance check (generalized Ligero)

▶ We can check that all yi are q-close to a subspace V by
checking a single vector is!∥∥∥∥∥∑

i

Griyi − V

∥∥∥∥∥
0

≤ q =⇒
p

∥yi − V ∥0 ≤ q,

where p ≤ (q + 1)(1− d/m) and q < d ′/2, defined as

d ′ = min
v∈V \{0}

∥v∥0
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Folded subspace distance check (cont)

▶ Part of the folded subspace distance proof is still open!

▶ Come and chat with us if this sounds interesting :)
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A whirlwind tour

▶ We just did... 7 checks in 10 minutes

▶ Many generalizations are straightforward

▶ We can replace RS in parts with other ECCs that are more
computationally efficient

▶ And we can understand many systems in one framework

▶ Paper (hopefully) soon!

Conclusion 23
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