Linear algebra and zero knowledge

Guillermo Angeris Alex Evans

ZK Summit 9, Lisboa

Outline

An introduction

Eating vegetables

Results

Sparsity results

An introduction

What are we doing?

We will generalize a number of important results used in ZK proofs

What are we doing?

- We will generalize a number of important results used in ZK proofs
- Most don't depend on polynomials!

What are we doing?

- We will generalize a number of important results used in ZK proofs
- Most don't depend on polynomials!
- Using (ideally) good notation, linear algebra
- And a sprinkling of error correcting codes

An introduction

A warning for the brave

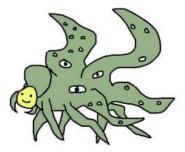
Linear algebra over **R** and **C**:

An introduction

A warning for the brave

Linear algebra over **R** and **C**:

Linear algebra over finite fields F:



Outline

An introduction

Eating vegetables

Results

Sparsity results

Notation preliminaries

We'll use 'probabilistic' implications

▶ Given propositions (depending on randomness *r* and *r*′)

$$P_r \implies Q_{r'}$$

 $\text{ if } \Pr(P_r \wedge \neg Q_{r'}) \leq p$

Number of downstream consequences

Implications

Chaining implications

$$\begin{array}{cccc} P_r & \underset{p}{\Longrightarrow} & Q_{r'} & \text{and} & Q_{r'} & \underset{p'}{\Longrightarrow} & T_{r''} \end{array}$$

$$\blacktriangleright \text{ Then } \\ P_r & \underset{p+p'}{\Longrightarrow} & T_{r''} \end{array}$$

Implications

Chaining implications

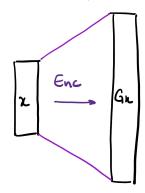
$$P_r \implies Q_{r'}$$
 and $Q_{r'} \implies T_{r''}$
Then
 $P_r \implies P_{r'} = T_{r''}$

Many other things similar to 'normal' logic follow

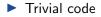
Eating vegetables

Error correcting codes

- Given a linear code (matrix) $G \in \mathbf{F}^{m \times n}$
- ▶ We encode an *n*-vector *x* into a (much larger) codeword *Gx*



Examples of codes



$$G = I$$

Examples of codes



$$G = I$$

$$G_{ij}=i^{j-1}$$

i.e., (Gx)_r encodes a polynomial with coefficients x and evaluates it at r

Error correcting codes (cont)

▶ We will use one (and only one!) definition from coding theory

► The *distance d* of *G* is

$$d=\min_{x\neq 0}\|Gx\|_0,$$

where $\|\cdot\|_0$ is the number of nonzero entries

Error correcting codes (cont)

▶ We will use one (and only one!) definition from coding theory

► The *distance d* of *G* is

$$d=\min_{x\neq 0}\|Gx\|_0,$$

where $\|\cdot\|_0$ is the number of nonzero entries

In pictures:

Distances of codes

The distance d of G ∈ F^{m×n} is

$$d = \min_{x \neq 0} ||Gx||_0$$

Trivial code G = I

$$d = 1$$

Reed–Solomon codes G_{ij} = i^{j-1}

$$d = m - n + 1 \quad (rows - cols + 1)$$
If m = |F| then d = |F| - n + 1

Outline

An introduction

Eating vegetables

Results

Sparsity results

Zero check

The usual zero check:

$$(Gx)_r = 0 \implies x = 0,$$

where r is uniformly chosen from $1, \ldots, m$ and $p \leq 1 - d/m$

For an RS code
$$d = |\mathbf{F}| - n + 1$$
 so

$$p \leq \frac{n-1}{|\mathbf{F}|}$$

Generalized zero check

• "Generalized" zero check, given vectors y_1, \ldots, y_n ,

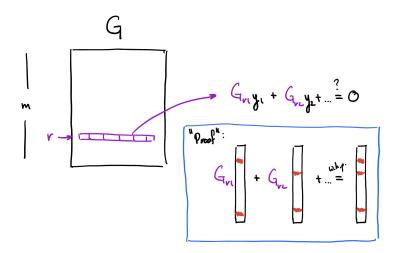
$$\sum_{i} G_{ri} y_i = 0 \quad \Longrightarrow_{p} \quad \text{every } y_i = 0,$$

where $p \leq 1 - d/m$

For an RS code, same bound as before

$$p \leq rac{n-1}{|\mathbf{F}|}$$

Generalized zero check (picture!)



Folded zero check

Take "generalized" zero check and apply the zero check again!

$$\left(G'\left(\sum_{i}G_{ri}y_{i}\right)\right)_{r'}=0$$
 \implies $\sum_{i}G_{ri}y_{i}=0,$

and

$$\sum_i G_{ri} y_i = 0 \quad \Longrightarrow_p \quad ext{every } y_i = 0,$$

where $p \leq 1 - d/m$ and $p' \leq 1 - d'/m'$

For an RS code, this is Schwarz-Zippel (with the same error!)

$$p + p' \le rac{(n-1) + (n'-1)}{|\mathbf{F}|}$$

Folded subspace check

We can reduce checking n inclusions to just checking one

$$\sum_i \mathsf{G}_{ri} y_i \in V \quad \Longrightarrow_p \quad ext{ every } y_i \in V,$$

where $p \leq 1 - d/m$ and $V \in \mathbf{F}^k$ is any subspace

For an RS code
$$d = |\mathbf{F}| - n + 1$$
 so (again)

$$p \leq \frac{n-1}{|\mathbf{F}|}$$

Outline

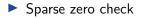
An introduction

Eating vegetables

Results

Sparsity results

Sparse zero check



$$x_{\mathcal{S}}=0 \quad \Longrightarrow_{p} \quad \|x\|_{0} \leq q,$$

where $S \subseteq \{1, \ldots, n\}$ uniformly and $p \leq (1 - q/n)^{|S|}$

Folded sparse check (Ligero lite(tm))

We can 'fold' many vectors y_i and just check the sparsity of one

$$\left\|\sum_{i} G_{ri} y_{i}\right\|_{0} \leq q \quad \Longrightarrow_{p} \quad \|y_{i}\|_{0} \leq q,$$
 where $p \leq (q+1)(1-d/m)$

Folded subspace distance check (generalized Ligero)

We can check that all y_i are q-close to a subspace V by checking a single vector is!

$$\left\|\sum_{i} G_{ri} y_{i} - V\right\|_{0} \leq q \quad \Longrightarrow_{p} \quad \|y_{i} - V\|_{0} \leq q,$$

where $p \leq (q+1)(1-d/m)$ and q < d'/2, defined as

$$d' = \min_{v \in V \setminus \{0\}} \|v\|_0$$

Folded subspace distance check (cont)

Part of the folded subspace distance proof is still open!

Come and chat with us if this sounds interesting :)

A whirlwind tour

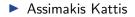
- We just did... 7 checks in 10 minutes
- Many generalizations are straightforward
- We can replace RS in parts with other ECCs that are more computationally efficient
- And we can understand many systems in one framework

A whirlwind tour

- We just did... 7 checks in 10 minutes
- Many generalizations are straightforward
- We can replace RS in parts with other ECCs that are more computationally efficient
- And we can understand many systems in one framework
- Paper (hopefully) soon!

Conclusion

Acknowledgments



Conclusion